
ISE 4 In-Depth Tutorial Printed in U.S.A.

ISE 4 In-Depth
Tutorial

HDL-Based Designs

Schematic-Based Designs

Behavioral Simulation

Design Implementation

Timing Simulation

iMPACT Tutorial

ISE 4 In-Depth Tutorial
The Xilinx logo shown above is a registered trademark of Xilinx, Inc.

CoolRunner, RocketChips, RocketIP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XILINX, XC2064,
XC3090, XC4005, and XC5210 are registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable
Logic Cell, CORE Generator, CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap,
Fast Zero Power, Foundation, Gigabit Speeds...and Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA,
LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia, MultiLINX, NanoBlaze, PicoBlaze,
PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, Rocket I/O, Select I/O, SelectRAM, SelectRAM+, Silicon
Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap,
UIM, VectorMaze, VersaBlock, VersaRing, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL,
XACTstep Advanced, XACTstep Foundry, XACT-Floorplanner, XACT-Performance, XAM, XAPP, X-BLOX +,
XChecker, XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP, all XC designated
products, and ZERO+ are trademarks of Xilinx, Inc. The Programmable Logic Company is a service mark of Xilinx,
Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown
herein; nor does it convey any license under its patents, copyrights, or maskwork rights or any rights of others.
Xilinx, Inc. reserves the right to make changes, at any time, in order to improve reliability, function or design and
to supply the best product possible. Xilinx, Inc. will not assume responsibility for the use of any circuitry described
herein other than circuitry entirely embodied in its products. Xilinx, Inc. devices and products are protected under
one or more of the following U.S. Patents: 4,642,487; 4,695,740; 4,706,216; 4,713,557; 4,746,822; 4,750,155;
4,758,985; 4,820,937; 4,821,233; 4,835,418; 4,855,619; 4,855,669; 4,902,910; 4,940,909; 4,967,107; 5,012,135;
5,023,606; 5,028,821; 5,047,710; 5,068,603; 5,140,193; 5,148,390; 5,155,432; 5,166,858; 5,224,056; 5,243,238;
5,245,277; 5,267,187; 5,291,079; 5,295,090; 5,302,866; 5,319,252; 5,319,254; 5,321,704; 5,329,174; 5,329,181;
5,331,220; 5,331,226; 5,332,929; 5,337,255; 5,343,406; 5,349,248; 5,349,249; 5,349,250; 5,349,691; 5,355,035;
5,357,153; 5,360,747; 5,361,229; 5,362,999; 5,365,125; 5,367,207; 5,386,154; 5,394,104; 5,397,943; 5,399,924;
5,399,925; 5,406,133; 5,410,189; 5,410,194; 5,414,377; 5,422,833; 5,426,378; 5,426,379; 5,430,687; 5,432,719;
5,448,181; 5,448,493; 5,450,021; 5,450,022; 5,453,706; 5,455,525; 5,466,117; 5,469,003; 5,475,253; 5,477,414;
5,481,206; 5,483,478; 5,486,707; 5,486,776; 5,488,316; 5,489,858; 5,489,866; 5,491,353; 5,495,196; 5,497,108;
5,498,979; 5,498,989; 5,499,192; 5,500,608; 5,500,609; 5,502,000; 5,502,440; 5,504,439; 5,504,440; 5,506,518;
5,506,523; 5,506,878; 5,513,124; 5,517,135; 5,521,835; 5,521,837; 5,523,963; 5,523,971; 5,524,097; 5,526,322;
5,528,169; 5,528,176; 5,530,378; 5,530,384; 5,546,018; 5,550,839; 5,550,843; 5,552,722; 5,553,001; 5,559,751;
5,561,367; 5,561,629; 5,561,631; 5,563,527; 5,563,528; 5,563,529; 5,563,827; 5,565,792; 5,566,123; 5,570,051;
5,570,059; 5,574,634; 5,574,655; 5,578,946; 5,581,198; 5,581,199; 5,581,738; 5,583,450; 5,583,452; 5,592,105;
5,594,367; 5,598,424; 5,600,263; 5,600,264; 5,600,271; 5,600,597; 5,608,342; 5,610,536; 5,610,790; 5,610,829;
5,612,633; 5,614,844; 5,617,021; 5,617,041; 5,617,327; 5,617,573; 5,623,387; 5,627,480; 5,629,637; 5,629,886;
5,631,577; 5,631,583; 5,635,851; 5,636,368; 5,640,106; 5,642,058; 5,646,545; 5,646,547; 5,646,564; 5,646,903;
5,648,732; 5,648,913; 5,650,672; 5,650,946; 5,652,904; 5,654,631; 5,654,665; 5,656,950; 5,657,290; 5,659,484;
5,661,660; 5,661,685; 5,668,495; 5,670,896; 5,670,897; 5,672,966; 5,673,198; 5,675,262; 5,675,270; 5,675,589;
5,677,638; 5,682,107; 5,684,413; 5,689,133; 5,689,516; 5,691,907; 5,691,912; 5,694,047; 5,694,055; 5,694,056;
5,694,399; 5,696,454; 5,701,091; 5,701,441; 5,703,759; 5,705,932; 5,705,938; 5,708,597; 5,712,579; 5,714,890;
5,715,197; 5,717,340; 5,719,506; 5,719,507; 5,724,276; 5,726,484; 5,726,584; 5,734,866; 5,734,868; 5,737,234;
5,737,235; 5,737,631; 5,742,178; 5,742,179; 5,742,531; 5,744,974; 5,744,979; 5,744,981; 5,744,995; 5,748,942;

R

Xilinx Development System

5,748,979; 5,752,006; 5,752,035; 5,754,459; 5,758,192; 5,760,603; 5,760,604; 5,760,607; 5,761,483; 5,764,076;
5,764,534; 5,764,564; 5,768,179; 5,770,951; 5,773,993; 5,778,439; 5,781,756; 5,784,313; 5,784,577; 5,786,240;
5,787,007; 5,789,938; 5,790,479; 5,790,882; 5,795,068; 5,796,269; 5,798,656; 5,801,546; 5,801,547; 5,801,548;
5,808,479; 5,811,985; 5,815,004; 5,815,016; 5,815,404; 5,815,405; 5,818,255; 5,818,730; 5,821,772; 5,821,774;
5,825,202; 5,825,662; 5,825,787; 5,828,230; 5,828,231; 5,828,236; 5,828,608; 5,831,448; 5,831,460; 5,831,845;
5,831,907; 5,835,402; 5,838,167; 5,838,901; 5,838,954; 5,841,296; 5,841,867; 5,844,422; 5,844,424; 5,844,829;
5,844,844; 5,847,577; 5,847,579; 5,847,580; 5,847,993; 5,852,323; 5,861,761; 5,862,082; 5,867,396; 5,870,309;
5,870,327; 5,870,586; 5,874,834; 5,875,111; 5,877,632; 5,877,979; 5,880,492; 5,880,598; 5,880,620; 5,883,525;
5,883,852; 5,886,538; 5,889,411; 5,889,412; 5,889,413; 5,889,701; 5,892,681; 5,892,961; 5,894,420; 5,896,047;
5,896,329; 5,898,319; 5,898,320; 5,898,602; 5,898,618; 5,898,893; 5,907,245; 5,907,248; 5,909,125; 5,909,453;
5,910,732; 5,912,937; 5,914,514; 5,914,616; 5,920,201; 5,920,202; 5,920,223; 5,923,185; 5,923,602; 5,923,614;
5,928,338; 5,931,962; 5,933,023; 5,933,025; 5,933,369; 5,936,415; 5,936,424; 5,939,930; 5,940,606; 5,942,913;
5,944,813; 5,945,837; 5,946,478; 5,949,690; 5,949,712; 5,949,983; 5,949,987; 5,952,839; 5,952,846; 5,955,888;
5,956,748; 5,958,026; 5,959,821; 5,959,881; 5,959,885; 5,961,576; 5,962,881; 5,963,048; 5,963,050; 5,969,539;
5,969,543; 5,970,142; 5,970,372; 5,971,595; 5,973,506; 5,978,260; 5,986,958; 5,990,704; 5,991,523; 5,991,788;
5,991,880; 5,991,908; 5,995,419; 5,995,744; 5,995,988; 5,999,014; 5,999,025; 6,002,268; 6,002,282; 6,002,991;
6,005,423; 6,005,829; 6,008,666; 6,011,407; 6,011,740; 6,016,063; 6,018,250; 6,018,624; 6,020,633; 6,020,756;
6,020,757; 6,020,776; 6,021,423; 6,023,564; 6,023,565; 6,025,736; 6,026,481; 6,028,445; 6,028,450; 6,033,938;
6,034,542; 6,034,548; 6,034,557; 6,035,106; 6,037,800; 6,038,386; 6,041,340; 6,043,692; 6,044,012; 6,044,025;
6,046,603; 6,047,115; 6,049,222; 6,049,227; 6,051,992; 6,054,871; 6,055,205; 6,057,589; 6,057,704; 6,057,708;
6,061,417; 6,061,418; 6,067,508; 6,069,488; 6,069,489; 6,069,490; 6,069,849; 6,070,260; 6,071,314; 6,072,348;
6,073,154; 6,074,432; 6,075,418; 6,078,201; 6,078,209; 6,078,528; 6,078,735; 6,078,736; 6,081,914; 6,084,429;
6,086,629; 6,086,631; 6,091,262; 6,091,263; 6,091,892; 6,094,063; 6,094,065; 6,094,385; 6,097,210; 6,097,238;
6,099,583; 6,100,705; 6,101,132; 6,101,143; 6,104,211; 6,105,105; 6,107,821; 6,107,826; 6,107,827; 6,112,322;
6,114,843; 6,118,286; 6,118,298; 6,118,300; 6,118,324; 6,118,869; 6,118,938; 6,120,549; 6,120,551; 6,121,795;
6,124,724; 6,124,731; 6,130,550; 6,133,751; 6,134,191; 6,134,517; 6,137,307; 6,137,714; 6,144,220; 6,144,225;
6,144,262; 6,144,933; 6,150,838; 6,150,839; 6,150,863; 6,154,048; 6,154,049; 6,154,052; 6,154,053; 6,157,209;
6,157,211; 6,157,213; 6,160,418; 6,160,431; 6,163,167; 6,167,001; 6,167,416; 6,167,545; 6,167,558; 6,167,560;
6,172,518; 6,172,519; 6,172,520; 6,173,241; 6,175,246; 6,175,530; 6,177,819; 6,177,830; 6,181,158; 6,181,164;
6,184,708; 6,184,709; 6,184,712; 6,185,724; 6,188,091; 6,191,610; 6,191,613; 6,191,614; 6,192,436; 6,195,774;
6,199,192; 6,201,406; 6,201,410; 6,201,411; and 6,202,106; Re. 34,363, Re. 34,444, and Re. 34,808. Other U.S.
and foreign patents pending. Xilinx, Inc. does not represent that devices shown or products described herein are
free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to correct any
errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not
assume any liability for the accuracy or correctness of any engineering or software support or assistance provided
to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

Copyright 1991-2001 Xilinx, Inc. All Rights Reserved.
ISE 4 In-Depth Tutorial

ISE 4 In-Depth Tutorial

Xilinx Development System

About This Manual

About the In-Depth Tutorial
This tutorial give a description of the features and additions to
Xilinx’s newest product—ISE 4. The primary focus of this tutorial is
to show the relationship between the design entry tools, Xilinx and
third-party tools, and the design implementation tools.

This guide is a learning tool for designers who are unfamiliar with
the features of the ISE software or those wanting to refresh their skills
and knowledge.

You may choose to follow one of four tutorial flows available in this
document. For information about the tutorial flows, see “Tutorial
Flows.”

Additional Resources
For additional information, go to http://support.xilinx.com. The
following table lists some of the resources you can access from this
page. You can also directly access some of these resources using the
provided URLs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging
http://support.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools
Search this database using the search function at
http://support.xilinx.com/support/searchtd.htm

Application
Notes

Descriptions of device-specific design techniques and approaches
http://support.xilinx.com/apps/appsweb.htm
ISE 4 In-Depth Tutorial v

http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm

ISE 4 In-Depth Tutorial
Tutorial Contents
This guide covers the following topics.

• Chapter 1, “HDL-Based Design,” guides you through a typical
HDL-based design procedure using a design of a runner’s stop-
watch called “Watch”.

• Chapter 2, “Schematic-Based Design,” explains many different
facets of a schematic-based ISE design flow using a design of a
runner’s stopwatch called “Watch”. This chapter also shows how
to use ISE accessories such as StateCad, Project Navigator,
LogiBLOX, and HDL Editor.

• Chapter 3, “Behavioral Simulation,” explains how to use the
Logic Simulator to simulate a design before design implementa-
tion to verify that the logic that you have created is correct.

• Chapter 4, “Design Implementation,” describes how to Translate,
Map, Place, Route, (Fit for CPLDs) and generate a Bit file for
designs.

Forums Discussion groups and chat rooms for Xilinx software users
http://toolbox.xilinx.com/cgi-bin/forum

Data Book Pages from The Programmable Logic Data Book, which describe device-
specific information on Xilinx device characteristics, including
readback, boundary scan, configuration, length count, and debugging
http://support.xilinx.com/partinfo/databook.htm

Xcell Journals Quarterly journals for Xilinx programmable logic users
http://support.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment
http://support.xilinx.com/support/techsup/journals/index.htm

Resource Description/URL
 vi Xilinx Development System

http://toolbox.xilinx.com/cgi-bin/forum
http://support.xilinx.com/partinfo/databook.htm
http://support.xilinx.com/xcell/xcell.htm
http://support.xilinx.com/support/techsup/journals/index.htm

• Chapter 5, “Timing Simulation,” explains how to perform a
timing simulation using the block and routing delay information
from the routed design to give an accurate assessment of the
behavior of the circuit under worst-case conditions.

• Chapter 6, “iMPACT Tutorial” describes Xilinx's next generation
device programming tool, iMPACT.

Tutorial Flows
This document contains four tutorial flows. In this section, the four
tutorial flows are outlined and briefly described, in order to help you
determine which sequence of chapters applies to your needs. The
tutorial flows include:

• HDL Design Flow

• Schematic Design Flow

• Implementation-only Flow

• IMPACT Flow

HDL Design Flow
The HDL Design flow is as follows:

• Chapter 1, “HDL-Based Design.”

• Chapter 3, “Behavioral Simulation.”
Note that behavioral simulation is optional; however, it is
strongly recommended in this tutorial flow.

• Chapter 4, “Design Implementation.”

• Chapter 5, “Timing Simulation.”
Note that timing simulation is optional; however, it is strongly
recommended.

• Chapter 6, “iMPACT Tutorial.”
IMPACT is optional. For customers who want to download their
design onto an FPGA/CPLD.
ISE 4 In-Depth Tutorial vii

ISE 4 In-Depth Tutorial
Schematic Design Flow
The Schematic Design flow is as follows:

• Chapter 2, “Schematic-Based Design.”

• Chapter 3, “Behavioral Simulation.”
Note that behavioral simulation is optional; however, it is
strongly recommended in this tutorial flow.

• Chapter 4, “Design Implementation.”

• Chapter 5,“Timing Simulation.”
Note that timing simulation is optional; however, it is strongly
recommended.

• Chapter 6, “iMPACT Tutorial.”
IMPACT is optional. For customers who want to download their
design to an FPGA/CPLD.

Implementation-only Flow
The Implementation-only flow is as follows:

• Chapter 4, “Design Implementation.”

• Chapter 5, “Timing Simulation.”
Note that timing simulation is optional; however, it is strongly
recommended.

• Chapter 6, “iMPACT Tutorial.”
IMPACT is optional. For customers who want to download their
design to an FPGA/CPLD.

IMPACT Flow
The IMPACT flow is as follows:

• Chapter 6, “iMPACT Tutorial.”
For customers who want to download their design to an FPGA/
CPLD.
 viii Xilinx Development System

Conventions

This manual uses the following typographical and online document
conventions. An example illustrates each typographical convention.

Typographical
The following conventions are used for all documents.

• Courier font indicates messages, prompts, and program files
that the system displays.

speed grade: -100

• Courier bold indicates literal commands that you enter in a
syntactical statement. However, braces “{ }” in Courier bold are
not literal and square brackets “[]” in Courier bold are literal
only in the case of bus specifications, such as bus [7:0].

rpt_del_net=

Courier bold also indicates commands that you select from a
menu.

File → Open

• Italic font denotes the following items.

• Variables in a syntax statement for which you must supply
values

edif2ngd design_name

• References to other manuals

See the Development System Reference Guide for more informa-
tion.
ISE 4 In-Depth Tutorial ix

ISE 4 In-Depth Tutorial
• Emphasis in text

If a wire is drawn so that it overlaps the pin of a symbol, the
two nets are not connected.

• Square brackets “[]” indicate an optional entry or parameter.
However, in bus specifications, such as bus [7:0], they are
required.

edif2ngd [option_name] design_name

• Braces “{ }” enclose a list of items from which you must choose
one or more.

lowpwr ={on|off}

• A vertical bar “|” separates items in a list of choices.

lowpwr ={on|off}

• A vertical ellipsis indicates repetitive material that has been
omitted.

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

• A horizontal ellipsis “. . .” indicates that an item can be repeated
one or more times.

allow block block_name loc1 loc2 ... locn;

• “Right-click” means click the right mouse button. Unless
specified, all other mouse operations are performed with the left
mouse button.

• Throughout this tutorial, file names, project names, and directory
names (paths) are specified in lower case

• The design used in this tutorial is referred to as Watch.

Online Document
The following conventions are used for online documents.

• Blue text indicates an intrabook link, which is a cross-reference
within a book. Click the blue text to open the specified cross-
reference.
x Xilinx Development System

• Blue underlined text indicates a Web site. Click the link to open
the specified Web site. You must have a Web browser and internet
connection to use this feature.
ISE 4 In-Depth Tutorial xi

ISE 4 In-Depth Tutorial
xii Xilinx Development System

Contents
About This Manual
About the In-Depth Tutorial .. v
Additional Resources ... v
Tutorial Contents.. vi
Tutorial Flows... vii

HDL Design Flow .. vii
Schematic Design Flow .. viii
Implementation-only Flow ... viii
IMPACT Flow.. viii

Conventions
Typographical... ix
Online Document ... x

Chapter 1 HDL-Based Design

Getting Started ... 1-2
Required Software .. 1-2
Installing the Tutorial... 1-2
Tutorial Project Directories and Files .. 1-2
Starting the ISE Software.. 1-3
VHDL or Verilog? .. 1-4

Overview of Project Navigator.. 1-4
Sources in Project Window... 1-6

Module View .. 1-6
Snapshot View... 1-6
Library View ... 1-6

Processes for Current Source Window..................................... 1-7
Process View ... 1-7

Console Window... 1-7
Error Navigation to Source .. 1-7
Error Navigation to Solution Record 1-8
ISE 4 In-Depth Tutorials xiii

ISE 4 In-Depth Tutorials
Snapshots ... 1-8
Creating a Snapshot .. 1-8
Restoring a Snapshot .. 1-9
Viewing a Snapshot ... 1-9

Project Archives .. 1-9
Creating an Archive ... 1-9
Restoring an Archive ... 1-9

Overview of Synthesis Tools.. 1-10
Xilinx Synthesis Technology (XST)... 1-10

Supported Devices .. 1-10
Process Properties .. 1-10

FPGA Express .. 1-10
Supported Devices .. 1-10
Process Properties .. 1-11

Synplify/Pro... 1-11
Supported Devices .. 1-11

Leonardo Spectrum .. 1-11
Supported Devices .. 1-11
Process Properties .. 1-12

Design Description ... 1-12
Design Entry... 1-14

Adding Source Files.. 1-14
Correcting HDL errors... 1-15
Starting the HDL Editor ... 1-16
Creating an HDL-Based Module ... 1-16

Using the HDL Design Wizard and HDL Editor 1-16
Using the Language Templates... 1-18

Creating a CoreGEN Module .. 1-21
Creating the Core Generator module 1-21
Instantiating the Coregen Module in the HDL Code 1-25

Synthesizing the Design... 1-29
Synthesizing the Design using XST.. 1-30
Synthesizing the Design using FPGA Express 1-32

The Express Constraints Editor (FPGA Express Only) 1-33
Using the Express Constraints Editor (FPGA Express Only) 1-35
Viewing Synthesis Results (FPGA Express Only) 1-38

Synthesizing the Design using Synplify/Synplify Pro 1-40
Synplify’s Constraints Editor, SCOPE 1-41
Using Synplify’s Constraints Editor, SCOPE 1-42
Examining Synthesis Results .. 1-45

Synthesizing the Design using Leonardo Spectrum 1-47
xiv Xilinx Development System

Contents
Chapter 2 Schematic-Based Design

Getting Started ... 2-2
Required Software .. 2-2
Installing the Tutorial... 2-2
Tutorial Project Directories and Files .. 2-3
Copying the Tutorial Files (Optional) .. 2-3
Starting the ISE Software.. 2-3

Overview of Project Navigator.. 2-5
Sources in Project Window... 2-5

Module View .. 2-5
Snapshot View... 2-6
Library View ... 2-7

Processes for Current Source Window..................................... 2-7
Process View ... 2-7

Console Window... 2-8
Error Navigation to Source .. 2-8
Error Navigation to Solution Record 2-8

Snapshots ... 2-8
Creating a Snapshot .. 2-8
Restoring a Snapshot .. 2-8
Viewing a Snapshot ... 2-9

Overview of Synthesis Tools.. 2-9
Xilinx Synthesis Technology (XST)... 2-9

Supported Devices .. 2-9
Process Properties .. 2-9

FPGA Express .. 2-10
Supported Devices .. 2-10
Process Properties .. 2-10

Leonardo Spectrum .. 2-10
Supported Devices .. 2-10
Process Properties .. 2-11

Design Description ... 2-11
Design Entry... 2-14

Starting the Schematic Editor ... 2-14
Manipulating the Screen View .. 2-16
Creating a Schematic-Based Macro ... 2-17
Creating the CNT60 Schematic .. 2-18

Connectivity—I/O Markers... 2-18
Project Libraries... 2-19
Adding Components to CNT60.. 2-19
Correcting Mistakes ... 2-21
ISE 4 In-Depth Tutorials xv

ISE 4 In-Depth Tutorials
Placing the Remaining Components 2-22
Drawing Wires ... 2-22
Adding Buses... 2-23
Adding Bus Taps ... 2-24
Adding Net Names... 2-26
Adding I/O Markers.. 2-26

Saving the Schematic ... 2-27
Creating the CNT60 symbol.. 2-27
Placing the CNT60 Macro... 2-28
Creating a CORE Generator Module .. 2-29

Creating the Core Generator module 2-29
Creating a State Machine Module... 2-32

Opening the State Editor ... 2-32
Adding New States .. 2-34
Adding a Transition.. 2-35
Adding a State Action .. 2-36
Adding a State Machine Reset Condition 2-37
Creating the State Machine Macro 2-38
Placing the STMACH, Tenths, and decode symbols........... 2-39

Creating an HDL-Based Module ... 2-40
Using the HDL Design Wizard and HDL Editor 2-40
Using the Language Templates... 2-43
Creating the HEX2LED symbol ... 2-45
Adding the HEX2LED Component to the Schematic........... 2-46

Specifying Device Inputs/Outputs ... 2-47
Hierarchy Push/Pop... 2-47
Adding Input Pins... 2-49

Adding I/O Markers and Net Names ... 2-50
Assigning Pin Locations.. 2-51
Completing the Schematic .. 2-53

Chapter 3 Behavioral Simulation

Overview of Behavioral Simulation Flow.. 3-1
Required Files... 3-2
Xilinx Simulation Libraries... 3-2

Unisims Library .. 3-2
LogiBLOX Library (VHDL Only) ... 3-3
XilinxCoreLib Library.. 3-3

Adding an HDL Testbench ... 3-4
VHDL design... 3-4
Verilog design ... 3-4

Creating a Testbench Waveform using HDL Bencher 3-5
xvi Xilinx Development System

Contents
Creating a Testbench Waveform Source.................................. 3-5
Initializing Inputs ... 3-6
Generating Expected Results ... 3-7

Behavioral Simulation using ModelSim.. 3-8
Selecting Simulation Processes.. 3-8
Specifiying Simulation Properties ... 3-9
Performing Simulation... 3-11
Adding Signals .. 3-12
Saving the Simulation ... 3-14
Restarting the Simulation.. 3-15

Chapter 4 Design Implementation

Installing the Tutorial Files ... 4-2
Creating an Implementation Project... 4-3
Specifying Options ... 4-4
Translating the Design ... 4-8
Using the Constraints Editor .. 4-9
Mapping the Design ... 4-12
Using the Floorplanner... 4-14
Using Timing Analysis to Evaluate Block Delays After Mapping.... 4-18

Estimating Timing Goals with 50/50 Rule 4-18
Report Paths in Timing Constraints Option............................... 4-18

Placing and Routing the Design... 4-20
Using FPGA Editor to Verify the Place and Route 4-21
Evaluating Post-Layout Timing .. 4-23
Creating Configuration Data... 4-25
Using the PROM File Formatter... 4-27

Chapter 5 Timing Simulation

Overview of Timing Simulation Flow .. 5-1
Required Files... 5-2
Xilinx Simulation Libraries... 5-2

Starting Modelsim .. 5-3
Specifying Simulation Process Properties 5-3

Simulation Properties... 5-3
Display Properties.. 5-4
Simulation Model Properties.. 5-4

Performing Simulation... 5-6
Adding Signals ... 5-6
Saving the Simulation .. 5-8
ISE 4 In-Depth Tutorials xvii

ISE 4 In-Depth Tutorials
Chapter 6 iMPACT Tutorial

Device Support... 6-2
Download Cable Support ... 6-2

Parallel Cable III.. 6-2
Multilinx Cable... 6-2

Configuration Mode Support .. 6-3
Starting the Software.. 6-3

Opening iMPACT from the Project Navigator 6-3
Opening iMPACT stand-alone .. 6-8

Connecting to a Cable.. 6-10
Boundary Scan Configuration Mode .. 6-12

Automatically Creating the Chain.. 6-12
Manually Creating the Chain... 6-14
Assigning Configuration Files ... 6-14
Saving the Chain Description.. 6-16
Edit Preferences ... 6-17
Available Boundary Scan Operations 6-17
Performing Boundary Scan Operations 6-19
Troubleshooting Boundary Scan Configuration 6-22

Creating a SVF or STAPL File ... 6-23
Creating the Chain .. 6-23
Select Programming File... 6-23
Writing to the SVF or STAPL File ... 6-24

Slave Serial Configuration Mode.. 6-26
Adding a Device.. 6-26
Programming the Device .. 6-30
Troubleshooting Slave Serial Configuration.............................. 6-32

Select MAP Configuration Mode .. 6-33
Adding a Device.. 6-34
Programming and Verifying a Device 6-37
Troubleshooting Select MAP Programming and Verify............. 6-39
xviii Xilinx Development System

Chapter 1

HDL-Based Design

This chapter guides you through a typical HDL-based design
procedure using a design of a runner ’s stopwatch. The design
example used in this tutorial demonstrates many device features,
software features and design flow practices you can apply to your
own design. This design targets a Virtex-II device; however, all of the
principles and flows taught are applicable to any Xilinx device family,
unless otherwise noted.

The design is composed of HDL elements and a CORE Generator
macro; you can synthesize the design using Xilinx Synthesis
Technology (XST), FPGA Express, Leonardo Spectrum, or Synplify.

This chapter is the first in the “HDL Design Flow.” This chapter is
followed by the “Behavioral Simulation” chapter, in which you
simulate the HDL code using the ModelSim Simulator. In the
“Design Implementation” chapter, you will implement the design
using the Xilinx Implementation Tools. The simulation,
implementation, and bitstream generation are described in
subsequent chapters.

This chapter includes the following sections:

• “Getting Started”

• “Overview of Project Navigator”

• “Overview of Synthesis Tools”

• “Design Description”

• “Design Entry”

• “Synthesizing the Design”

Note: For an example of how to design with CPLDs, go to the online
help in Project Navigator. To do so, select Help →
ISE 4 In-Depth Tutorial 1-1

ISE 4 In-Depth Tutorial
ISE Help Contents, and under Tutorials, select CPLD Design
Flows.

Getting Started
The following subsections describe the basic requirements for
running the tutorial.

Required Software
The Xilinx Series ISE package is required to perform this tutorial. The
design requires that you have installed the Virtex-II libraries and
device files, and that you are licensed for FPGA Express or Base
Express. You must also have the Watch Tutorial projects which may
be downloaded from http://support.xilinx.com.

Note: An Express license is required to access the Express Constraints
GUI.

Installing the Tutorial
This tutorial assumes that the software is installed in the default
location C:\XILINX. If you have installed the software in a different
location, substitute your installation path for C:\XILINX.

Unzip the tutorial projects in the C:\XILINX\ directory and replace
any existing files. The files downloaded from the web have been
updated.

Note: For detailed instructions, refer to the ISE 4.1i Install and Release
Document.

Tutorial Project Directories and Files
The wtut_vhd and wtut_ver directories are created within
C:\XILINX\ISExamples, and the tutorial files are copied into these
directories. These directories contain complete and incomplete
versions of the design, done in VHDL and Verilog, respectively. These
projects will be used to step through the ISE flow. However, for
reference, completed projects are also provided. The following table
lists the associated project.
1-2 Xilinx Development System

http://support.xilinx.com

HDL-Based Design
The watchvhd(_u) and watchver(_u) solution projects contain the
design files for the completed tutorials, including HDL files and the
bitstream file. To conserve disk space, some intermediate files are not
provided. Do not overwrite any files in the solutions directories.

The wtut_vhd and wtut_ver projects contain incomplete copies of the
tutorial design. You will create the remaining files when you perform
the tutorial. As described in a later step, you have the option to copy
the Watch project to another area and perform the tutorial in this new
area if desired.

Starting the ISE Software
To follow along with this tutorial, you will need to launch the ISE
software package. To do so:

1. Double-click the ISE Project Navigator icon on your desktop or
select Start → Programs → Xilinx Series ISE 4.1i→
Project Navigator.

2. From Project Navigator, select File → Open Project.

Table 1-1 Tutorial Project Directories

Directory Description

wtut_vhd Incomplete Watch Tutorial - VHDL

wtut_ver Incomplete Watch Tutorial - Verilog

watchvhd_u Solution for Watch - VHDL (UNIX)

watchver_u Solution for Watch - Verilog (UNIX)

watchvhd Solution for Watch - VHDL

watchver Solution for Watch - Verilog
ISE 4 In-Depth Tutorial 1-3

ISE 4 In-Depth Tutorial
Figure 1-1 Getting Started Dialog Box

3. In the Directories list, browse to c:\xilinx\iseexam-
ples\wtut_vhd or wtut_ver.

4. Double-click on wtut_vhd.npl or wtut_ver.npl.

VHDL or Verilog?
This tutorial has been prepared for both VHDL and Verilog designs.
This document applies to both designs simultaneously, noting
differences where applicable. You will need to decide which HDL
language you would like to work through the tutorial when you open
the project.

Overview of Project Navigator
The Project Navigator controls all aspects of the design flow. Through
the Project Navigator, you can access all of the various design entry
and design implementation tools. You can also access the files and
documents associated with your project. The Project Navigator
maintains a flat directory structure; therefore, the user must maintain
revision control through the use of snapshots.

The Project Navigator is divided into four main subwindows. On the
top left is the Sources in Project window which hierarchically
displays the elements included in the project. Beneath the Sources in
Project window is the Processes for Current Source window which
1-4 Xilinx Development System

HDL-Based Design
displays available processes. The third window at the bottom of the
Project Navigator is the Message Console and shows status messages,
errors, and warnings and is updated during all project actions. The
fourth window to the right is the HDL Editor. From this window a
user edits source files and accesses the Language Templates. These
windows are discussed in more detail in the following sections.

Figure 1-2 Project Navigator
ISE 4 In-Depth Tutorial 1-5

ISE 4 In-Depth Tutorial
Sources in Project Window
This window has three tabs which provide information for the user.
Each tab is discussed in further detail below.

Module View

In the Module View tab of the Sources in Project window, user
documents, part type, synthesis tool, and design source files are
displayed. User documents are listed under the project name. Source
files are listed under the part name and synthesis tool. Next to each
filename is an icon which tells you the file type (HDL file, schematic,
core, text file, for example). If a file contains lower levels of hierarchy,
the icon has a + to the left of the name. HDL files have this + to show
the entities (VHDL) or modules (Verilog) within the file. You can
expand the tree by clicking this icon. You can open a file for editing
by double-clicking on the filename.

Note: While in the module view, you may select a different synthesis
tool by double-clicking the project properties (the line above the
stopwatch top-level source), and then changing the design flow to
another tool.

Snapshot View

A snapshot is a method of revision control. At any time in the design
cycle the user can take a snapshot. A snapshot consist of all files in the
current working directory. This also includes synthesis and
simulation sub-directories. A snapshot can also be restored to resume
work at that phase in the design cycle. In the Snapshot View tab of the
Sources in Project window, all of the snapshots associated with the
open project are displayed. This allows the user to view the reports,
user documents, and source files. All information displayed in the
snapshot view is read-only.

Note: Remote sources are not copied with the snapshot. A reference
is maintained in the snapshot.

Library View

In the Library View tab of the Sources in Project window, all libraries
associated with the project are displayed.
1-6 Xilinx Development System

HDL-Based Design
Processes for Current Source Window
This window contains the Process View tab.

Process View

The Processes for Current Source Window is located beneath the
Sources in Project Window. This window is context sensitive and
changes based upon the selected source. The status of each process is
displayed on the process icon as a red x, yellow exclamation, or green
check mark. The Process Window provides access to the following
functions:

• Design Entry Utilities—Provides access to symbol generation,
user constraints, and instantiation templates.

• Synthesize—Provides access to check syntax, synthesis, and
synthesis reports. This also varies depending on the synthesis
tools being used.

• Implement Design— Provides access to implementation tools,
design flow reports, and point tools.

• Generate Programming File—Provides access to the
configuration tools and bitstream generation.

The Processes for Current Source window incorporates automake
technology. This allows the user to select any process in the flow and
the software automatically runs the processes necessary to get to the
desired step. For example, if the synthesis process has not been run, it
is not necessary to run the synthesis process before running the
implementation process. Running the implementation process causes
the synthesis process to be run before running implementation.

Console Window
Errors, warnings, and informational messages are displayed in the
Console Window. Errors and warnings are signified by a red box next
to the message, while warnings have a yellow box.

Error Navigation to Source

The Console Window provides the ability to navigate from a
synthesis error or warning message to the source HDL file. This can
be done by selecting the error or warning message, right-clicking the
ISE 4 In-Depth Tutorial 1-7

ISE 4 In-Depth Tutorial
mouse and selecting Goto Source. This will open the HDL source file
and move the cursor to the line with the error.

Error Navigation to Solution Record

The Console Window provides the ability to navigate from an error
or warning message to the support.xilinx.com web site. These type of
errors or warnings can be identified by the web icon to the left of the
error. To navigate to the solution record, select the error or warning
message, right-click the mouse and select Goto Solution Record. This
opens a web browser and displays all solution records applicable to
this message.

Snapshots
Snapshots provide the user the ability to maintain revision control
over the design. A snapshot contains all of the files in the project
directory.

Figure 1-3 Snapshot View

Creating a Snapshot

A snapshot is created by selecting Project → Take a Snapshot.
This opens the Take a Snapshot of the Project dialog box. This allows
the user to enter the snapshot name and any comments associated
with the snapshot. The snapshot contains all of the files in the project
directory along with project settings.
1-8 Xilinx Development System

HDL-Based Design
Restoring a Snapshot

The Snapshot View, of the Source Window, contains a list of all the
snapshots available in the current project. Since snapshots are read-
only, a snapshot must be restored in order to continue work. To do
this, select the snapshot and select Project → Replace with
Snapshot. The user is prompted to create a snapshot of the current
project directory and restore the selected snapshot for further work.

Viewing a Snapshot

The Snapshot View, of the Source Window, contains a list of all the
snapshots available in the current project. A snapshot can be opened
to review report or verify process status by selecting the snapshot,
right-click the mouse and selecting Open.

Project Archives
The ISE software also allows a user to archive the entire project into a
single compressed file. This allows for easier transfer over email and
storage of numerous projects in a limited space.

Creating an Archive

An archive can be created by selecting Project → Archive. This
opens the Create Zip Archive dialog box, in which the user enters the
archive name and location to be saved. The archive contains all of the
files in the project directory along with project settings. Remote
sources are not zipped up into the archive.

Restoring an Archive

ISE does not have a specific menu item or feature to restore an
archive, as the compressed file can be extracted with any ZIP utility.
The project directory will be placed in the location where the archive
is extracted.
ISE 4 In-Depth Tutorial 1-9

ISE 4 In-Depth Tutorial
Overview of Synthesis Tools
This tutorial explains and demonstrates how to synthesize your
design using four synthesis tools. The following section lists the
devices supported by each synthesis tool and includes some process
properties information.

Xilinx Synthesis Technology (XST)

Supported Devices

• VirtexTM/-E /-II /-IIPro

• SpartanTM-II /-IIE

• XC9500TM /XL/XV

• CoolrunnerTM /-II

Process Properties

Process properties allow the user to control the synthesis results of
XST. Two commonly used properties are Optimization Goal and
Optimization Effort. Through these properties the user can control
the synthesis results for area or speed, and the amount of time the
synthesizer runs.

More detailed information is available in the XST User Guide.

FPGA Express

Supported Devices

• VirtexTM/-E /-II /-IIPro

• SpartanTM/XL/-II/-IIE

• XC9500TM /XL /XV

• XC4000TM E /EX /XL /XV /XLA

• CoolrunnerTM /-II
1-10 Xilinx Development System

HDL-Based Design
Process Properties

Process properties allow you to control the synthesis results of FPGA
Express. Two commonly used properties are Optimization Goal and
Optimization Effort. Through these properties, you can control the
synthesis results for area or speed and the amount of time the
synthesizer runs.

More detailed information is available in the FPGA Express online
help.

Synplify/Pro
This synthesis tool is not part of the ISE package and is not available
unless purchased separately.

Supported Devices

• VirtexTM/-E /-II /-IIPro

• SpartanTM/XL/-II/-IIE

• XC9500TM /XL /XV

• XC4000TM E /EX /XL /XV /XLA

• CoolrunnerTM /-II

Leonardo Spectrum
This synthesis tool is not part of the ISE package and is not available
unless purchased separately.

Supported Devices

• VirtexTM/-E /-II /-IIPro

• SpartanTM/XL/-II/-IIE

• XC9500TM /XL /XV

• XC4000TM E /EX /XL /XV /XLA

• CoolrunnerTM /-II
ISE 4 In-Depth Tutorial 1-11

ISE 4 In-Depth Tutorial
Process Properties

Process properties allow you to control the synthesis results of
Leonardo Spectrum. Two commonly used properties are
Optimization Goal and Optimization Effort. Through these
properties the user can control the synthesis results for area or speed
and the amount of time the synthesizer runs.

More detailed information is available in the Leonardo Spectrum
online help.

Design Description
The design used in this tutorial is a hierarchical, HDL-based design
which means that the top-level design file is an HDL file that
references several other lower-level macros. The lower-level macros
are either HDL modules or CORE Generator modules.

The design begins as an unfinished design. Throughout the tutorial,
you complete the design by generating some of the modules from
scratch and by completing some others from existing files. When the
design is complete, you simulate it to verify the design’s
functionality.

The Watch design is a simple runner’s stopwatch. There are three
external inputs, and three external output buses in the completed
design. The system clock is an externally generated signal. The
following list summarizes the input lines and output buses.

Inputs

• STRTSTOP —Starts and stops the stopwatch. This is an active
low signal which acts like the start/stop button on a runner’s
stopwatch.

• RESET—Resets the stopwatch to 00.0 after it has been stopped.

• CLK—Externally generated system clock.
1-12 Xilinx Development System

HDL-Based Design
Outputs

• TENSOUT[6:0]—7-bit bus which represents the Ten’s digit of the
stopwatch value. This bus is in 7-segment display format
viewable on the 7-segment LED display.

• ONESOUT[6:0]—Similar to TENSOUT bus above, but represents
the One’s digit of the stopwatch value.

• TENTHSOUT[9:0]—10-bit bus which represents the Tenths’ digit
of the stopwatch value. This bus is one-hot encoded.

The completed design consists of the following functional blocks.

• STATMACH

State Machine module.

• CNT60

HDL-based module which counts from 0 to 59, decimal. This
macro has 2 4-bit outputs, which represent the ones and tens
digits of the decimal values, respectively.

• TENTHS

CORE Generator 4-bit, binary encoded counter. This macro
outputs a 4-bit code which is decoded to represent the tenths
digit of the watch value as a 10-bit one-hot encoded value.

• HEX2LED

HDL-based macro. This macro decodes the ones and tens digit
values from hexadecimal to 7-segment display format.

• SMALLCNTR

A simple Counter.

• DECODE

Decoded the CORE Generator output from 4-bit binary to a 10-bit
one hot output.
ISE 4 In-Depth Tutorial 1-13

ISE 4 In-Depth Tutorial
Design Entry
In this hierarchical design, you will examine HDL files, correct syntax
errors, create an HDL macro, and add a CORE Generator module. In
this tutorial, you will create and use each type of design macro so that
you can apply these procedures to your own design.

With wtut_vhd or wtut_ver project open in Project Navigator, the
Sources in Project window displays all of the source files currently
added to the project, with the associated entity or module names (see
Figure 1-4). In the current project, smallcntr and hex2led are
instantiated, but the associated entity or module is not defined in the
project. Instantiated components with no entity or module
declaration are displayed with a red question-mark.

Figure 1-4 Sources in Project Window

Adding Source Files
HDL files must be added to the project before they can be
synthesized. Four HDL files have already been added to this project,
but have not yet been analyzed. To analyze the source files,

1. Select stopwatch.vhd or stopwatch.v in the Sources in Project
window.

Upon selecting the HDL file, the process window displays all
processes available for this file.

Now add the remaining HDL file to the project.

2. Select Project → Add Source.

3. Select smallcntr.vhd or smallcntr.v from the project directory.
1-14 Xilinx Development System

HDL-Based Design
4. In the Choose Source Type dialog box, select HDL module.

5. Click OK.

The red question-mark (?) for smallcntr should change to a V.

After adding the file to the project, the file is not automatically
analyzed. To analyze the source files:

1. Select stopwatch.vhd or stopwatch.v in the Sources in Project
window.

Upon selecting the HDL file, the Processes for Current Sources in
Project window displays all processes available for this file.

2. Select Analyze Hierarchy in the Synthesize hierarchy to update
the files.

Correcting HDL errors
The SMALLCNTR design contains a syntax error that must be
corrected. The red “x” beside the Analyze Hierarchy process
indicates an error was found during analysis. The Project Navigator
reports errors in red and warnings in yellow in the console.

Note: Help for FPGA Express errors or warning is available in the
stand alone version of Express.

To display the error in the source file:

3. Double-click on the error message in the console window.

4. Correct any errors in the HDL source file. The comments next to
the error explain this simple fix.

5. Select File → Save to save the file.

6. Re-analyze the file by selecting the HDL file and double-clicking
Analyze Hierarchy under the Synthesize hierarchy to update
these file.
ISE 4 In-Depth Tutorial 1-15

ISE 4 In-Depth Tutorial
Starting the HDL Editor
There are three different ways to open the HDL Editor tool.

• File → New opens an untitled file in the HDL Editor.

• Double-click an HDL file in the Sources in Project window from
the Module View, File View, Snapshot View, or Library View.

• Right-click an HDL file in the Sources in Project window and
select Open.

You may stop the tutorial at any time and save your work by
selecting File → Save All.

Creating an HDL-Based Module
With ISE, you can easily create modules from HDL code. The HDL
code is connected to your top-level HDL design through instantiation
and compiled with the rest of the design.

You will create a new HDL module. This macro serves to convert the
two 4-bit outputs of the CNT60 module into a 7-segment LED display
format.

Using the HDL Design Wizard and HDL Editor

You enter the name and ports of the component in HDL Wizard, and
HDL Wizard creates a “skeleton” HDL file which you can complete
with the remainder of your code.

To create the source file:

1. Select Project → New Source.

A dialog box opens in which you specify the type of source you
want to create.

2. Select VHDL or Verilog Module.

3. In the File Name field, type ‘hex2led’.

4. Click on Next.
1-16 Xilinx Development System

HDL-Based Design
The hex2led component has a 4-bit input port named hex and a 7-bit
output port named led. To enter these ports:

1. Click in the Port Name field and type HEX.

2. Click in the Direction field and set the direction to in.

3. In the MSB field enter 3, and in the LSB field enter 0.

Figure 1-5 HDL Wizard

Repeat the previous steps for the LED[6:0] output bus. Be sure
that the direction is set to out.

4. Click Next to complete the Wizard session.

A description of the module is now displayed.

5. Click Finish to open the “skeleton” HDL file in HDL Editor.

The skeleton VHDL and Verilog HDL file are found in Figure 1-6 and
Figure 1-7.
ISE 4 In-Depth Tutorial 1-17

ISE 4 In-Depth Tutorial
Figure 1-6 Skeleton VHDL File

Figure 1-7 Skeleton Verilog File

In the HDL Editor, the ports are already declared in the HDL file, and
some of the basic file structure is already in place. Keywords are
printed in blue, data types in red, comments in green, and values are
black. This color-coding enhances readability and recognition of
typographical errors.

Using the Language Templates

The ISE language templates include HDL constructs and synthesis
templates which represent commonly used logic components, such as
counters, D flip-flops, multiplexers, and primitives. The instantiation
templates created by the CORE Generator are placed among the
language templates in a COREGEN folder. You can add your own
1-18 Xilinx Development System

HDL-Based Design
templates to the language template for components or constructs you
use often.

To invoke the Language Assistant and select the template for this
tutorial:

1. Select Edit → Language Templates.

Each HDL language in the Language Template is divided into
four sections: Component Instantiations, Language Templates,
Synthesis Templates, and User Templates. To expand the view of
any of these sections, click the + next to the topic. Click any of the
listed templates to view the template in the right-hand pane.

2. Under either the VHDL or Verilog hierarchy, expand the
Synthesis Templates hierarchy and select the template called
HEX2LED Converter. Use the appropriate template for the
language you are using.

3. To preview the HEX2LED Converter template, click the template
in the hierarchy and the contents are displayed in the right-hand
pane.

This template provides source code to convert a 4-bit value to 7-
segment LED display format.
ISE 4 In-Depth Tutorial 1-19

ISE 4 In-Depth Tutorial
Figure 1-8 Language Templates

The tutorial describes the drag and drop method only for adding
templates to your HDL file. Please note that you can also copy and
paste directly from the Language Template and use the right-click
menu.
1-20 Xilinx Development System

HDL-Based Design
To add the template to your HDL file:

1. In the Language Template, click and drag the HEX2LED
Converter name into the hex2led.vhd file under the architecture
statement, or the hex2led.v file under the module declaration.

2. Close the Language Assistant by clicking the X in the upper-right
corner of the window.

3. (Verilog only) After the input and output statements and before
the HEX2LED converter that you just added, add the following
line of code to the HDL file to allow an assignment:

reg LED;

You now have complete and functional HDL code.

4. Save the file by selecting File → Save.

5. Select hex2led in the Sources in Project window and double-click
Check Syntax under Synthesize in the Processes for Current
Source window.

6. Exit the HDL Editor.

Creating a CoreGEN Module
CORE Generator is a graphical interactive design tool you use to
create high-level modules such as counters, shift registers, RAM and
multiplexers. You can customize and pre-optimize the modules to
take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions,
and on-chip RAM for dual-port and synchronous RAM.

In this section, you create a CORE Generator module called Tenths.
Tenths is a 4-bit binary encoded counter. The 4-bit number is decoded
to count the tenths digit of the stopwatch’s time value.

Creating the Core Generator module

Select the type of module you want in the CORE dialog box, as well
as the specific features of the module. Invoke this GUI from the
Project Navigator New Source Wizard.
ISE 4 In-Depth Tutorial 1-21

ISE 4 In-Depth Tutorial
To select the module type:

1. In Project Navigator, select Project → New Source.

2. Select Coregen IP.

3. Enter tenths in the File Name field.

4. Click Next and then Finish.

The Xilinx CORE Generator 4.1i opens and displays a list of
possible COREs available.

5. Double-click on Basic Elements - Counters.

6. Double-click on Binary Counter to open the Binary Counter
dialog box.

This dialog box allows you to customize the counter to the design
specifications.

7. Fill in the Binary Counter dialog with the following settings:

• Component Name: tenths

Defines the name of the module.

• Output Width: 4

Defines the width of the output bus.

• Operation: Up

Defines how the counter will operate. This field is dependant
on the type of module you select.

• Count Style: Count by Constant

Allows counting by a constant or a user supplied variable.

• Count Restrictions: Enable and Count To Value A (HEX)

This dictates the maximum count value.

• Threshold Options: Threshold0 set to A

Signal goes high when the value specified has been reached.

• Threshold Options: Registered

8. Click the Register Options button to open the Register
Options dialog box.

9. In the Register Options dialog box, enter the following settings:
1-22 Xilinx Development System

HDL-Based Design
• Clock Enable: Selected

• Asynchronous Settings: Init with a value of 1.

• Synchronous Settings: None

10. Click OK.

Note: Check that only the following pins are used:

• AINIT

• CE

• Q

• Q_Thresh0

• CLK
ISE 4 In-Depth Tutorial 1-23

ISE 4 In-Depth Tutorial
Figure 1-9 CoreGen Module Selector

11. Click Generate.

The module is created and automatically added to the project library.
1-24 Xilinx Development System

HDL-Based Design
A number of files are added to the project directory. These files are:

• tenths.edn

This file is the netlist that is used during the Translate phase
of implementation.

• tenths.vhd or tenths.v

This is the instantiation template that is used to incorporate
the CORE Generator module in your source HDL.

• tenths.xco

This file stores the configuration information for the Tenths
module and is used as a project source.

• coregen.prj

This file stores the Coregen configuration for the project.

12. Click Cancel and close Core Generator.

Instantiating the Coregen Module in the HDL Code

Next, instantiate the Coregen Module in the HDL code using either a
VHDL flow or a Verilog flow.

VHDL Flow

To instantiate the Coregen Module using a VHDL flow:

1. Double-click stopwatch.vhd to open the file in HDL Editor.

2. Place your cursor after the line that states:

“-- Insert Coregen Counter Component Declaration”

3. Select Edit → Insert File and choose Tenths.vhd.

The VHDL template file for the Coregen instantiation is inserted.

Note: The Component Declaration does not need to be modified.

4. Highlight the inserted code from
“-- Begin Cut here for INSTANTIATION Template”
to
“AINIT=>AINIT);”

5. Select Edit → Cut.
ISE 4 In-Depth Tutorial 1-25

ISE 4 In-Depth Tutorial
Figure 1-10 VHDL Component Declaration of Coregen Module

6. Place the cursor after the line that states:

“--Insert Coregen Counter Instantiation”

7. Select Edit → Paste to place the instantiation here.

8. Change “your_instance_name” to XCOUNTER.

9. Edit this instantiated code to connect the signals in the Stopwatch
design to the ports of the Coregen module.
1-26 Xilinx Development System

HDL-Based Design
The completed code looks like the following:

Figure 1-11 VHDL Component Instantiation of Coregen Module

10. Remove the attributes for the two synthesis tools not used and
any comments not relevant to the design.

11. Save the design (File → Save) and close the HDL Editor.

Verilog Flow

To instantiate the Coregen Module using a Verilog flow:

1. Double-click stopwatch.v to open the file in HDL Editor.

2. Place your cursor after the line that states:

“// Place the CoreGen Module Declaration for Tenths here”

3. Select Edit → Insert File and choose Tenths.v.

The Verilog template file for the Coregen instantiation is inserted.

Note: The Component Declaration does not need to be modified.

4. Highlight the inserted code from“Tenths YourInstanceName” to
“AINIT=(AINIT));”

5. Select Edit → Cut.
ISE 4 In-Depth Tutorial 1-27

ISE 4 In-Depth Tutorial
Figure 1-12 Verilog Module Declaration of Coregen Module

6. Place the cursor after the line that states:

“// Place the CoreGen Component Instantiation for Tenths
here.”

7. Select Edit → Paste to place the instantiation here.

8. Change “YourInstanceName” to XCOUNTER.

9. Edit this code to connect the signals in the Stopwatch design to
the ports of the CoreGen module.
1-28 Xilinx Development System

HDL-Based Design
The completed code is shown in the following figure:

Figure 1-13 Verilog Component Instantiation of the CoreGen
Module

10. Save the design (File → Save) and close stopwatch.v in the
HDL Editor.

Synthesizing the Design
Up to this point, the design has been utilizing XST for syntax
checking and analysis. The synthesis tool can be changed at anytime
during the design flow. To change the synthesis tool:

1. Select the targeted part in the Sources in Project window.

2. Select Source → Properties.

3. In the Project Properties dialog box, click the Synthesis Tool
column and use the pulldown arrow to select the desired
synthesis tool from the list.
ISE 4 In-Depth Tutorial 1-29

ISE 4 In-Depth Tutorial
Figure 1-14 Specifying Synthesis Tool

This tutorial describes design synthesis using the tools XST, FPGA
Express, Synplify with SCOPE, and Leonardo Spectrum in the
following sections:

• “Synthesizing the Design using XST”

• “Synthesizing the Design using FPGA Express”

• “Synthesizing the Design using Synplify/Synplify Pro”

• “Synthesizing the Design using Leonardo Spectrum”

Synthesizing the Design using XST
Now that the design has been entered and analyzed, the next step is
to synthesize the design. In this step, the HDL files are translated into
gates and optimized to the target architecture.

To synthesize the design with XST:

1. Select stopwatch.vhd (or stopwatch.v).

2. Double-click on the Synthesize process in the Processes for
Current Source window.
1-30 Xilinx Development System

HDL-Based Design
Note: This step can also be done by selecting stopwatch.vhd (or
stopwatch.v), clicking Synthesize in the Processes for Current Source
window and selecting Process → Run.

Figure 1-15 Synthesis/Implementation Window

At this point, an EDN file exists for the Stopwatch design. Go to:

• the “Behavioral Simulation” chapter to perform a pre-synthesis
simulation of this design.

• the “Design Implementation” chapter to place and route the
design.

• the “Timing Simulation” chapter for post-place and route
simulation.

Note: For more information concerning XST constraints, options,
reports, or running XST via command line see the XST User Guide at
http://support.xilinx.com.
ISE 4 In-Depth Tutorial 1-31

http://support.xilinx.com

ISE 4 In-Depth Tutorial
Synthesizing the Design using FPGA Express
Now that the design has been entered and analyzed, the next step is
to synthesize the design. In this step, the HDL files are translated into
gates and optimized to the target architecture.

To synthesize the design with FPGA Express:

1. Set the global synthesis options by selecting stopwatch.vhd (or
stopwatch.v), then right-click on the Synthesis process and select
Properties.

2. Set the Default Frequency to 50MHz, and check the Export
Timing Constraints box.

3. Click OK to accept these values.

4. Select stopwatch.vhd (or stopwatch.v) and double-click on the
Synthesize process in the Processes for Current Source window.

Note: This step can also be done by selecting stopwatch.vhd (or
stopwatch.v), clicking Synthesize in the Processes for Current Source
window and selecting Process → Run.

The process labeled Edit Constraints creates a functional structure of
the design and opens the Express Constraints Editor. The process
labeled View Synthesis Results optimizes and synthesizes the
functional structure, then displays the results in the Express
Constraints Editor.
1-32 Xilinx Development System

HDL-Based Design
Figure 1-16 Synthesis/Implementation Window

Note: The Express Constraints Editor is not available to users who
are not registered or those with a Base Express license. All the
functionality covered by the Express Constraints Editor can be
achieved by component instantiation (Pullups, Pulldowns, Clock
Buffers, I/O Flip-Flops), UCF file (timing constraints, pin location
constraints), MAP options (merging flip-flops into IOBs), or through
fe_shell scripting. If you are a Base Express customer, skip to the
“Behavioral Simulation” chapter.

The Express Constraints Editor (FPGA Express Only)

The Express Constraints Editor allows you to control optimization
options and pass timing specifications to the Place and Route
software. This Editor is only available with the FPGA Express
product, and not Base Express. All timing specifications are passed in
the netlist directly to the place and route engine, and are used in the
synthesis process for timing estimation purposes only.

Clocks

The Default Frequency, set in Synthesize Process Properties, is
applied to all clocks in the design.
ISE 4 In-Depth Tutorial 1-33

ISE 4 In-Depth Tutorial
To change the specification of a clock:

1. Click inside the box to the right of the clock and select Define.

2. Enter the clock period or give the rise and fall times.

Paths

All types of paths that can be covered by timing specifications are
listed here, with unique specifications given for each clock in the
design.

To modify these specifications, enter a new delay in the Req. Delay
column.

To create a subpath within a path:

1. Right-click the source(from) or destination(to) and select New
Subpath.

2. Enter the subpath name and delay value.

3. Select sources and destinations by double-clicking the instances.
You can also use wildcards in the selection filters to choose a
group of elements.

Ports

In the Ports tab, you can set input and out delay requirements, assign
clock buffers, insert pullup or pulldown resistors in the I/O, set delay
properties for input registers, set slew rate, disable the use of I/O
registers, and assign pin locations. For all but the pin locations, click
in the box to use the pulldown menu. For pin locations, type the pin
number in the box.

Modules

With the Modules tab, you can keep or eliminate hierarchy and
disable resource sharing. You can also override the default settings
for effort and area versus speed at the module level. Block level
Incremental Synthesis is also enabled here.

Registers

This tab allows the designer to view the estimated fanout of the
registers as well as setting the maximum fanout for the registers.
1-34 Xilinx Development System

HDL-Based Design
Xilinx Options

The Ignore unlinked cells during GSR mapping option directs
Express to infer a global reset signal (and, therefore, insert the
STARTUP module), even if black boxes have been instantiated.
Express does not know the reset characteristics of any logic in black
boxes, so it will not insert STARTUP unless you check this option.

Using the Express Constraints Editor (FPGA Express
Only)

Xilinx recommends that you let the automatic placement and routing
program, PAR, define the pinout of your design. Pre-assigning
locations to the pins can sometimes degrade the performance of the
place-and-route tools. However, it is usually necessary, at some point,
to lock the pinout of a design so that it can be integrated into a PCB
(printed circuit board).

Define the initial pinout by running the place-and-route tools without
pin assignments, then lock down the pin placement so that it reflects
the locations chosen by the tools. Assign locations to the pins in the
Watch design so that the design can function in a Xilinx
demonstration board. Because the design is simple and timing is not
critical, these pin assignments do not adversely affect the ability of
PAR to place-and-route the design.

For HDL-based designs, these pin assignments can be done in a User
Constraints File (.ucf) or with the Express Constraints Editor.
Although UCF files are provided for this tutorial, you will assign
some basic timing constraints with a pin location constraint. You can
save the Express Constraints Editor constraints at any time by
clicking the Export Constraints icon. Doing so will give you the
option of saving the file as an ASCII .ctl file or binary .exc file. If you
do not export the constraints, they remain for the particular design
version that you are working on.

1. Under the Paths tab, click in the box in Row 1 below the Req.
Delay header (from All Input Ports to RC-CLK).

2. Change the delay to 15.

Under the Ports tab, the Input Delays for RESET and STRTSTOP
have changed to 15, as these represent all the Pad to Setup delays.
ISE 4 In-Depth Tutorial 1-35

ISE 4 In-Depth Tutorial
Note: To change the values of individual Input or Output Delays,
click the value in the Ports tab and either editing the value there or
using the pulldown tab to select a value or define a new one. Change
the values on one of the output signals using one of these methods.

3. Under the Paths tab, right-click either RC-CLK or All Output
Ports in the second row and select New Sub path.

The Create/Edit Timing Subpath window opens.

4. Give this new subpath a name, Sub_flops_to_out, and a Delay
value, 18.

5. On the left-hand side, double-click all four flip-flops that contain
the name *sixty/lsbcount/QOUT*, to determine the sources of
this subpath.

6. On the lower right hand side, use the filter to select the
destinations. Type ONE* in the field and click the Select button.

All the ports beginning with ONESOUT will be highlighted.

7. Click OK to see your new subpath.

Note: The filter is case sensitive.
1-36 Xilinx Development System

HDL-Based Design
Figure 1-17 Editing Subpath in the Express Constraints Editor

8. Under the Ports tab, add one pin location constraint in the Pad
Loc column.

9. Scroll to the right to see this column.

CLK must be assigned to P15. To reassign, click the box and enter
the pin number.
ISE 4 In-Depth Tutorial 1-37

ISE 4 In-Depth Tutorial
Figure 1-18 Ports Tab Display

10. Click Save → Constraints.

11. Click OK to close the editor.

Viewing Synthesis Results (FPGA Express Only)

Constraint requirements and results can be viewed by double-
clicking View Synthesis Results under Synthesize in the Processes for
Current Source window. The delay values are based on wireload
models and, therefore, must be considered preliminary. Consult the
post-route timing reports for the most accurate delay information.
1-38 Xilinx Development System

HDL-Based Design
To view the synthesis results:

1. Under the Clocks tab, examine the estimated delay value of the
clock. Delays greater than the specification appear in red.

2. Under the Paths tab, examine the estimated delays for the paths
and subpath.

3. Click the source or destination of a path to see the members of the
path, and click a specific path to see the individual segments of
that path.

Figure 1-19 Estimated Timing Data Under Paths Tab

4. Examine the Ports tab to see that all of the settings and delays
have been assigned and met.

5. Under the Modules tab, examine the elements used to synthesize
this design. Click the box in the second row under Area and click
Details. This section summarizes all the design elements used
in the Stopwatch design that Express knows about.

Since the Tenths module is a CORE Generator component and
has not been synthesized by Express, it is UNLINKED and no
summary information is available.
ISE 4 In-Depth Tutorial 1-39

ISE 4 In-Depth Tutorial
Note: Black boxes (modules not read into the Express design
environment) are always noted as UNLINKED in the Express reports.
As long as the underlying netlist (.xnf, .ngo, .ngc or .edn) for a black
box exists in the project directory, the Implementation tools merge the
netlist in during the Translate phase. Since the Tenths module was
built using Coregen called from the project, the tenths EDN file will
be found.

6. Click OK to close the editor.

At this point, an EDN file exists for the Stopwatch design. Go to:

• the “Behavioral Simulation” chapter to perform a pre-synthesis
simulation of this design.

• the “Design Implementation” chapter to place and route the
design.

• the “Timing Simulation” chapter for post place and route
simulation.

Synthesizing the Design using Synplify/Synplify Pro
Now that the design has been entered and analyzed, the next step is
to synthesize the design. In this step, the HDL files are translated into
gates and optimized to the target architecture.

To synthesis the design:

1. Set the global synthesis options by selecting stopwatch.vhd (or
stopwatch.v), then right-clicking Synthesis in the Processes for
Current Source window, and selecting Properties.

2. Set the Default Frequency to 50MHz, and check the Write Vendor
Constraint File box.

3. Click OK to accept these values.

4. Select stopwatch.vhd (or stopwatch.v) and double-click on the
Synthesize process in the Process Window.

Note: This step can also be done by selecting stopwatch.vhd (or
stopwatch.v), clicking Synthesize in the Processes for Current Source
window and selecting Process → Run.
1-40 Xilinx Development System

HDL-Based Design
Synplify’s features include:

• The process labeled Compile will synthesize the RTL into generic
logic.

• The process labeled Mapping will map the synthesized RTL into
the target technology.

• Synplify’s other features such as the RTL viewer and the
constraints editor called SCOPE are available from the synthesis
process window.

Double-click any one of these features to launch Synplify and open
the appropriate feature window.

Figure 1-20 Synplify Synthesis/Implementation Window

Synplify’s Constraints Editor, SCOPE

Synplify’s Constraints Editor allows you to control optimization
options and pass timing specifications to the Place and Route
software. All timing specifications are passed in the netlist constraints
file (NCF) which in turn gets passed directly to the place and route
engine. Some of the timing constraints are used by the synthesis
engine to produce better synthesis results for the place and route
tools.
ISE 4 In-Depth Tutorial 1-41

ISE 4 In-Depth Tutorial
Clock

Defines a specific clock frequency that overrides the global frequency.
Useful when using the CLKDLL in Virtex parts or the DCM in Virtex-
II parts.

Inputs/Outputs

Defines the OFFSET IN/OUT constraints for inputs and outputs.

Registers

Constraints for paths feeding into/out of registers.

Multi-cycle Paths

Used to define paths that require multiple number of clocks cycles.

False Paths

Paths that the Timing Analyzer is supposed to ignore.

Attributes

Attributes and synthesis directives that do not fit in one of the above
categories (like syn_maxfanout).

Other

Place-and-route tools constraints that are not used by Synplify but
will be used by the place-and-route tools.

Using Synplify’s Constraints Editor, SCOPE

Xilinx recommends that you let the automatic placement and routing
program, PAR, define the pinout of your design. Pre-assigning
locations to the pins can sometimes degrade the performance of the
place-and-route tools. However, it is usually necessary, at some point,
to lock the pinout of a design so that it can be integrated into a PCB
(printed circuit board).

Define the initial pinout by running the place-and-route tools without
pin assignments, then locking down the pin placement so that it
reflects the locations chosen by the tools. Assign locations to the pins
in the Watch design so that the design can function in a Xilinx
demonstration board. Because the design is simple and timing is not
1-42 Xilinx Development System

HDL-Based Design
critical, these pin assignments do not adversely affect the ability of
PAR to place-and-route the design.

For HDL-based designs, these pin assignments can be done in a User
Constraints File (.ucf) or with SCOPE. Although UCF files are
provided for this tutorial, you will assign some basic timing
constraints with a pin location constraint in SCOPE.

To add clock and location constraints:

1. Double-click Edit Constraint File in the Processes for Current
Source window.

You will see that Synplify launches with the SCOPE window
open.

2. In SCOPE, click the Clocks tab.

3. Now, call up the RTL viewer by selecting HDL Analyst → RTL
→ Hierarchical View.

Alternatively you can get to the RTL viewer by selecting the XOR
symbol on the tool bar in Synplify.

4. Arrange the windows using the zoom functions from within
Synplify so that you can see both the RTL view and SCOPE. The
zoom functions for the RTL viewer are represented as magnifying
glasses on the tool bar in Synplify.

5. Locate the clock net that exits from the BUFG. See Figure 1-21.

6. Click the clock net to highlight it and drag it to the first cell under
the Clock column in the Clocks tab.

What you should see now is n:clk_dcm. The ‘n’ signifies net, and
‘clk_dcm’ is the name of the net.

7. Insert 50 MHz (or 20 ns) as the desired clock frequency.

Note: Because we are using a DCM, the frequency constraint that was
entered at the beginning did not propagate forward to the clock pins
of the flip-flops.
ISE 4 In-Depth Tutorial 1-43

ISE 4 In-Depth Tutorial
Figure 1-21 Setting a Clock Constraint in SCOPE

8. In SCOPE, click the Attributes tab.

9. Select CLK in the Object column.

10. In the Attribute column, select the Synplify constraint xc_loc.

11. In the Value column, which represents the pin location, select
P15. To reassign, click the box and enter the pin number.

See the results in the Figure 1-22.
1-44 Xilinx Development System

HDL-Based Design
Figure 1-22 Setting a Location Constraint in SCOPE

12. Save the constraints in Synplify by selecting File → Save or
by clicking the Save icon in the tool bar.

13. Exit Synplify.

Examining Synthesis Results

To view overall synthesis results, double-click on View Map Report
under the Mapping process. The report consists of the following three
sections:

• “Compiler Summary”

• “Timing Report”

• “Mapping Report”

Compiler Summary

The compiler summary reports on the files in the project. This section
of the report is where you will find the errors and warnings
associated with each file.

Note: Black boxes (modules not read into Synplify’s design
environment) are always noted as Unbound in the Synplify reports.
As long as the underlying netlist (.xnf, .ngo, .ngc or .edn) for a black
box exists in the project directory, the Implementation tools merge the
netlist in during the Translate phase. Since the Tenths module was
built using CORE Generator called from the project, the tenths EDN
file can be found.
ISE 4 In-Depth Tutorial 1-45

ISE 4 In-Depth Tutorial
Figure 1-23 Synplify’s Estimated Timing Data

Timing Report

The timing report section details information on the constraints that
you have entered along with delays on portions of the design that
had no constraints. The delay values are based on wireload models
and, therefore, must be considered preliminary. Consult the post-
route timing reports for the most accurate delay information.

Mapping Report

The mapping report lists all of the components that were used for the
design (LUTs, flip-flops, block RAMs, etc.).
1-46 Xilinx Development System

HDL-Based Design
At this point, an EDN file exists for the Stopwatch design.

• To perform a pre-synthesis simulation of this design, see the
“Behavioral Simulation” chapter.

• To place and route the design, see the “Design Implementation”
chapter.

• To perform post-place and route simulation, see the “Timing
Simulation” chapter.

Synthesizing the Design using Leonardo Spectrum
Now that the design has been entered and analyzed, the next step is
to synthesize the design. In this step, the HDL files are translated into
gates and optimized to the target architecture.

1. Set the global synthesis options by selecting stopwatch.vhd (or
stopwatch.v).

2. Right-click on the Synthesis process and select Properties.

3. Set the Default Frequency to 50MHz under the Synthesis Options
tab.

4. Make sure the Do Not Write NCF box is unchecked under the
Netlist Options tab.

5. Click OK to accept these values.

6. Select stopwatch.vhd (or stopwatch.v) and double-click on the
Synthesize process in the Process Window.

This step can also be done by selecting stopwatch.vhd (or
stopwatch.v), and then selecting the Synthesize process in the
Processes for Current Source Window.

7. Select Process → Run.
ISE 4 In-Depth Tutorial 1-47

ISE 4 In-Depth Tutorial
Figure 1-24 Leonardo Spectrum Synthesis/Implementation
Window

8. Double-click View Synthesis Report and View Synthesis
Summary to see the details of the synthesis.

The Synthesis Report summarizes the compilation, the mapping
and the timing of the design. The Synthesis Summary goes into
more detail on the mapping and timing of the design.
1-48 Xilinx Development System

Chapter 2

Schematic-Based Design

This chapter guides you through a typical FPGA schematic-based
design procedure using a design of a runner’s stopwatch. The design
example used in this tutorial demonstrates many device features,
software features, and design flow practices that you can apply to
your own design. The Watch design targets a Virtex-II device;
however, all of the principles and flows taught are applicable to any
Xilinx device family, unless otherwise noted.

For an example of how to design with CPLDs, see the online help by
selecting Help → ISE Help Contents in Project Navigator. In the
Help Contents under Tutorials, select CPLD Design Flows.

This chapter is the first in the “Schematic Design Flow.” In the first
part of the tutorial, you will use the ISE design entry tools to
complete the design. The design is composed of schematic elements,
a state machine, a CORE Generator component, and an HDL macro.
After the design is successfully entered in the Schematic Editor, you
are ready to perform a behavioral simulation with ModelSim, found
in the “Behavioral Simulation” chapter, implementation with the
Xilinx Implementation Tools, found in the “Design Implementation”
chapter, and timing simulation with ModelSim, found in the
“Timing Simulation” chapter.

This chapter includes the following sections.

• “Getting Started”

• “Overview of Project Navigator”

• “Overview of Synthesis Tools”

• “Design Description”

• “Design Entry”
ISE 4 In-Depth Tutorial 2-1

ISE 4 In-Depth Tutorial
Getting Started
The following sections describe the basic requirements for running
the tutorial.

Required Software
The Xilinx Series ISE package, is required to perform this tutorial. For
this design you must install the Virtex-II libraries and device files,
and you must be licensed for FPGA Express or Base Express. You
must also have the Watch projects on your computer, which may be
downloaded from http://support.xilinx.com.

Note: An Express license is required to access the Express Constraints
GUI.

Installing the Tutorial
This tutorial assumes that the software is installed in the default
location, c:\xilinx. If you have installed the software in a different
location, substitute your installation path for c:\xilinx.

Unzip the tutorial projects in the c:\xilinx directory, and replace any
existing files. The files downloaded from the web have the most
recent updates.

Note: For detailed instructions, refer to the Series ISE 4.1i Install and
Release Document.
2-2 Xilinx Development System

http://support.xilinx.com

Schematic-Based Design
Tutorial Project Directories and Files
The following schematic project directories can be downloaded and
installed with the tutorial.

• c:\xilinx\iseexamples\wtut_sc
(incomplete schematic tutorial)

• c:\xilinx\iseexamples\watch_sc
(complete schematic tutorial)

The schematic tutorial files are copied into these directories.

The wtut_sc project contains an incomplete copy of the tutorial
design. You will create the remaining files when you perform the
tutorial. As described in a later step, you can copy this project to
another area and perform the tutorial in this new area if desired.

The watch_sc solution project contains the design files for the
completed tutorial including schematics and the bitstream file. To
conserve disk space, some intermediate files are not provided. Do not
overwrite any files in the solutions directories.

Copying the Tutorial Files (Optional)
You can either work within the project directory as it has been
downloaded, or you can make a copy to work on. To make a working
copy of the tutorial files, use Windows Explorer to copy the wtut_sc
directory to another location. The wtut_sc project directory contains
all of the necessary project files.

Starting the ISE Software
To follow along with this tutorial, you will need to launch the ISE
software package. To do so:

1. Double-click the ISE Project Navigator icon on your desktop or
select Start → Programs → Xilinx ISE 4.1i→ Project
Navigator.
ISE 4 In-Depth Tutorial 2-3

ISE 4 In-Depth Tutorial
2. From Project Navigator, select File → Open Project.

Figure 2-1 Getting Started Dialog Box

3. In the Directories list, browse to
c:\xilinx\iseexamples\wtut_sc.

4. Double-click wtut_sc.npl.
2-4 Xilinx Development System

Schematic-Based Design
Overview of Project Navigator
Project Navigator controls all aspects of the design flow. Through
Project Navigator, you can access all of the various design entry and
design implementation tools. You can also access the files and
documents associated with your project. Project Navigator maintains
a flat directory structure, therefore you must maintain revision
control through the use of snapshots.

Project Navigator is divided into four main subwindows. On the top
left is the Sources in Project window, which hierarchically displays
the elements included in the project. Beneath the Sources in Project
window is the Process Window, which displays available processes.
The third window at the bottom of Project Navigator is the Message
Console, which shows status, error, and warning messages. It is
updated during all project actions. On the right, the fourth window is
the HDL Editor. From this window you can edit source files and
access the Language Templates. These windows are discussed in
more detail in the following sections.

Sources in Project Window
The Sources in Project window has three tabs that provide
information for the user. Each tab is discussed in further detail below.

Module View

In the Module View tab of the Sources in Project window, user
documents, part types, synthesis tools, and design source files are
displayed. User documents are listed under the project name. Source
files are listed under the part name and synthesis tool. Next to each
filename is an icon that tells you the file type (HDL file, schematic,
core, text file, for example). If a file contains lower levels of hierarchy,
the icon has a + to the left of the name. HDL files have this + to show
the entities (VHDL) or modules (Verilog) within the file. You can
expand the tree by clicking this icon. You can open a file for editing
by double-clicking on the filename.
ISE 4 In-Depth Tutorial 2-5

ISE 4 In-Depth Tutorial
Figure 2-2 Project Navigator

Snapshot View

A snapshot is a method of revision control. At any time in the design
cycle you can take a snapshot. A snapshot consists of all files in the
current working directory. This also includes synthesis and
simulation subdirectories. You can restore a snapshot to resume work
at a particular phase in the design cycle. In the Snapshot View tab of
the Sources in Project window, all of the snapshots associated with
the open project are displayed. This allows you to view the reports,
2-6 Xilinx Development System

Schematic-Based Design
user documents, and source files. All information displayed in the
snapshot view is read-only.

Note: Remote sources are not copied with the snapshot. A reference
to the remote source is maintained in the snapshot.

Library View

In the Library View tab of the Sources in Project window, all libraries
associated with the project are displayed.

Processes for Current Source Window

Process View

The Process Window is located beneath the Sources in Project
window. This window is context sensitive and changes based upon
the selected source. The status of each process is displayed on the
process icon as a red x, yellow exclamation, or green check mark. The
Process Window provides access to the following functions:

• Design Entry Utilities—Provides access to symbol generation,
test bench generation, and instantiation templates.

• Synthesis—Provides access to check syntax, synthesis, and
synthesis reports. This varies depending on the synthesis tools
you use.

• Implement Design—Provides access to implementation tools,
design flow reports, and point tools.

• Create Programming File—Provides access to the configuration
tools and bitstream generation.

The Processes for Current Source window incorporates automake
technology. This means you can select any process in the flow, and
the software automatically runs the processes necessary to get to the
step you selected. For example, if the synthesis process has not been
run, it is not necessary to run the synthesis process before running the
implementation process. Running the implementation process causes
the synthesis process to run before implementation runs.
ISE 4 In-Depth Tutorial 2-7

ISE 4 In-Depth Tutorial
Console Window
Error, warning, and informational messages are displayed in the
Console Window. Errors and warnings are signified by a red box next
to the message, while warnings have a yellow box.

Error Navigation to Source

The Console Window provides the ability to navigate from a
synthesis error or warning message to the source HDL file. This can
be done by right-clicking the error or warning message and selecting,
Goto Source. This opens the HDL source file and move the cursor to
the line with the error.

Error Navigation to Solution Record

If an error or warning message has a solution record associated with
it, the Console Window provides the ability to navigate from the error
or warning message to the solution record on the support.xilinx.com
web site. These type of errors or warnings can be identified by the
web icon to the left of the error. To navigate to the solution record,
right-click the error or warning message and select Goto Solution
Record. This opens a web browser and display any solution records
applicable to this message.

Snapshots
Snapshots enable you to maintain revision control over the design. A
snapshot contains all of the files in the project directory.

Creating a Snapshot

You can create a snapshot by selecting Project → Take a
Snapshot. This opens the Take a Snapshot of the Project dialog box.
Enter the snapshot name and any comments associated with the
snapshot. The snapshot contains all of the files in the project directory
along with project settings.

Restoring a Snapshot

The Snapshot View, of the Sources in Project window, contains a list
of all the snapshots available in the current project. Since snapshots
are read-only, a snapshot must be restored in order to work with it. To
2-8 Xilinx Development System

Schematic-Based Design
do this select the snapshot and select Project → Replace with
Snapshot. You will be prompted to create a snapshot of the current
project directory and restore the selected snapshot for further work.

Viewing a Snapshot

The Snapshot View of the Sources in Project window contains a list of
all the snapshots available in the current project. You can open a
snapshot to review report or verify process status by right-clicking
the snapshot and selecting Open.

Overview of Synthesis Tools
The following synthesis tools can be used in a schematic-based
design. This section lists the devices supported by each synthesis tool
and some process properties information.

Xilinx Synthesis Technology (XST)

Supported Devices

XST supports the following devices.

• VirtexTM/ -E /-II /- II Pro

• SpartanTM-II /-IIE

• XC9500TM /XL /XV

• CoolrunnerTM /-II

Process Properties

Process properties allow you to control the synthesis results of XST.
Two commonly used properties are Optimization Goal and
Optimization Effort. Through these properties you can control the
synthesis results for area or speed, and the amount of time the
synthesizer runs.

More detailed information is available in the XST User Guide.
ISE 4 In-Depth Tutorial 2-9

ISE 4 In-Depth Tutorial
FPGA Express

Supported Devices

FPGA Express supports the following devices.

• VirtexTM/ -E /-II /-II Pro

• SpartanTM/XL/-II /-IIE

• XC9500TM /XL /XV

• XC4000TM E /EX /XL /XV /XLA

• CoolrunnerTM /-II

Process Properties

Process properties allow you to control the synthesis results of FPGA
Express. Two commonly used properties are Optimization Goal and
Optimization Effort. Through these properties you can control the
synthesis results for area or speed, and the amount of time the
synthesizer runs.

More detailed information is available in the FPGA Express online
help.

Leonardo Spectrum
This synthesis tool is not part of the ISE package, therefore it is not
available unless you have purchased it separately.

Supported Devices

Leonardo supports the following devices.

• VirtexTM/-E /-II /-II Pro

• SpartanTM/XL/-II/-IIE

• XC9500TM /XL /XV

• XC4000TM E /EX /XL /XV /XLA

• CoolrunnerTM /-II
2-10 Xilinx Development System

Schematic-Based Design
Process Properties

Process properties allow you to control the synthesis results of
Leonardo Spectrum. Two commonly used properties are
Optimization Goal and Optimization Effort. Through these
properties you can control the synthesis results for area or speed and
the amount of time the synthesizer runs.

More detailed information is available in the Leonardo Spectrum
online help.

Design Description
Throughout this tutorial, the design is referred to as Watch.

The design used in this tutorial is a hierarchical, schematic-based
design, meaning that the top-level design file is a schematic sheet that
refers to several other lower-level macros. The lower-level macros are
a variety of different types of modules including schematic-based
modules, CORE Generator modules, state machine modules, and
HDL modules.

The design begins as an unfinished design. Throughout the tutorial,
you will complete the design by creating some of the modules, and
by completing some others from existing files. After the design is
complete, you will simulate the design to verify its functionality.

Watch is a simple runner’s stopwatch. The completed schematic is
shown in the following figure.
ISE 4 In-Depth Tutorial 2-11

ISE 4 In-Depth Tutorial
Figure 2-3 Completed Watch Schematic

There are three external inputs and three external outputs in the
completed design. The following list summarizes the inputs and
outputs, and their respective functions.

Inputs:

• CLK

System clock for the Watch design.

• STRTSTOP

Starts and stops the stopwatch. This is an active-low signal that
acts like the start/stop button on a runner’s stopwatch.

• RESET

Resets the stopwatch to 00.0 after it has been stopped.
2-12 Xilinx Development System

Schematic-Based Design
Outputs:

• TENSOUT(6:0)

7-bit bus that represents the tens digit of the stopwatch value.
This bus is in 7-segment display format to be viewable on the 7-
segment LED display.

• ONESOUT(6:0)

Similar to the TENSOUT bus above, but represents the ones digit
of the stopwatch value.

• TENTHSOUT(9:0)

10-bit bus which represents the tenths digit of the stopwatch
value. This bus is one-hot encoded.

The completed design consists of the following functional blocks.
Most of these blocks do not yet appear on the schematic sheet in the
tutorial project since they are created during this tutorial.

Functional Blocks

• STMACH_V

State Machine macro. This module uses StateCAD to enter and
implement the state machine.

• CNT60

Schematic-based module which counts from 0 to 59 decimal. This
macro has two 4-bit outputs, which represent the ones and tens
digits of the decimal values, respectively.

• TENTHS

CORE Generator 4-bit, binary encoded counter. This macro
outputs a 4-bit code that is decoded to represent the tenths digit of
the watch value as a 10-bit one-hot encoded value.

• HEX2LED

HDL-based macro. This macro decodes the ones and tens digit
values from hexadecimal to 7-segment display format.
ISE 4 In-Depth Tutorial 2-13

ISE 4 In-Depth Tutorial
• OUTS3

Schematic based macro containing inverters.

• DECODE

Decodes the CORE Generator output from 4-bit binary to a 10-bit
one-hot output.

Design Entry
In this hierarchical design, you will create various types of macros,
including schematic-based macros, HDL-based macros, state
machine macros, and CORE Generator macros. You will learn the
process for creating each of these types of macros, and connect them
together to create the completed Watch design. This tutorial gives
you experience with creating and using each type of design macro so
that you can apply this knowledge to your own design.

Starting the Schematic Editor
There are two different ways to open the Schematic Editor tool.

• Select Project → New Source. This will open the New Source
dialog box where the schematic source type can be selected. This
will create a new schematic.

or

• Double-click the file name stopwatch.sch in the Sources in Project
window.

The Schematic Editor opens with the Watch schematic sheet loaded.
The Watch schematic is incomplete at this point. Throughout the
tutorial, you will create the components to complete the design. The
unfinished design is shown in the figure below.
2-14 Xilinx Development System

Schematic-Based Design
Figure 2-4 Incomplete Watch Schematic

If you need to stop the tutorial at any time, save your work by
selecting File → Save.
ISE 4 In-Depth Tutorial 2-15

ISE 4 In-Depth Tutorial
Figure 2-5 Schematic Editor

Manipulating the Screen View
Under the View pulldown menu is a series of commands that modify
the viewing area of the Schematic Editor window. Select View →
Zoom → In until you can comfortably view the schematic.
2-16 Xilinx Development System

Schematic-Based Design
Creating a Schematic-Based Macro
A schematic-based macro consists of a symbol and an underlying
schematic. You can create either the underlying schematic or the
symbol first, and the tools can automatically generate the
corresponding symbol or schematic file, respectively. In the following
steps, you will create a schematic-based macro by using the New
Source Wizard. A template schematic file is then created by the tools,
and you complete the schematic with the appropriate logic. The
created macro is then automatically added to the project’s library.

The macro you will create is called CNT60. CNT60 is a binary counter
with two 4-bit outputs, which represent the Ones and Tens values of
the stopwatch. The counter counts from 0 to 59, decimal.

1. Select Project → New Source in the Project Navigator. The
New Source dialog opens (see Figure 2-6).

The New Source dialog provides a list of all available source
types.

2. Select Schematic as the source type.

3. Enter ‘CNT60’ as the file name.

4. Click Next, then Finish.

This creates a new schematic named CNT60 and adds the schematic
file to the project.
ISE 4 In-Depth Tutorial 2-17

ISE 4 In-Depth Tutorial
Figure 2-6 New Source Dialog Box

Creating the CNT60 Schematic
You have now created an empty schematic for CNT60. The next step
is to add the components which comprise the CNT60 macro. You can
then reference this macro symbol by placing it on a schematic sheet.

Connectivity—I/O Markers

I/O markers logically connect the CNT60 symbol and its underlying
schematic. The name of each pin on the symbol must have a
corresponding connector in the underlying schematic.

To add hierarchy connectors manually, select Add → Marker or click
the I/O Marker icon from the Tools toolbar.

Note: The Tools toolbar is displayed by selecting View → Toolbars,
and clicking the Tools toolbar option.

When you save a macro, the Schematic Editor checks the I/O markers
against the corresponding symbol. If there is a discrepancy, you can
2-18 Xilinx Development System

Schematic-Based Design
let the software update the symbol automatically, or you can modify
the symbol manually. I/O markers should be used to connect signals
between levels of hierarchy and also to specify the ports on top-level
schematic sheets.

Project Libraries

 ISE contains several different types of libraries.

• Schematic: Xilinx Unified Symbol libraries contain macros and
primitives. Engineering Capture System(ECS) contains access to
these library elements using the Symbol Library dialog box.

• Schematic: Project specific libraries are a collection of the symbols
created for the current project. Each symbol is maintained as a
sym file in the current project directory.

• Simulation: Different libraries are utilized for functional and
timing simulation. A discussion of each library type can be found
in the Function Simulation and Timing Simulation chapters.

Adding Components to CNT60

Components from the device and project libraries for the given
project are available from the Symbol Libraries toolbox to place on
the schematic. The available components listed in this toolbox are
arranged alphabetically within each library.

1. From the menu bar, select Add → Symbol or click the Add
Symbol icon from the Tools toolbar.

This opens the Symbol Browser window, if it is not already
shown to the right of the schematic editor, and displays the
libraries and their corresponding components.

Note: Components can be rotated in two ways. New components
being added to a schematic can be rotated by selecting CTRL+R.
Existing components can be rotated by selecting the move mode,
selecting the component, and then selecting CTRL+R.
ISE 4 In-Depth Tutorial 2-19

ISE 4 In-Depth Tutorial
Figure 2-7 Symbol Browser Dialog Box

The first component you will place is an AND2, a 2-input AND
gate.

2. Select this component one of two ways:

• Highlight the Logic category from the Symbol Browser and
select it from the symbols list.

• Select All Symbols and type ‘AND2’ in the Symbol Name
Filter at the bottom of the Symbol Browser window.

3. Move the mouse back into the schematic window.

4. Move the symbol outline to the location shown in the following
figure and click the left mouse button to place the object.
2-20 Xilinx Development System

Schematic-Based Design
Figure 2-8 Completed CNT60 Schematic

Note: The preceding schematic illustrates the completed CNT
schematic. Use this figure as a reference for drawing nets and buses
in the following sections.

Correcting Mistakes

If you make a mistake when placing a component, you can easily
move or delete the component.

To exit the Symbols Mode, press the Esc key on the keyboard.

To delete the component in one of two ways:

• Click the component and press the delete key on your keyboard.

• Right-click the component and click Delete.

To move the component, click the component and drag the mouse
around the screen.
ISE 4 In-Depth Tutorial 2-21

ISE 4 In-Depth Tutorial
Placing the Remaining Components

Follow the steps listed previously in the “Adding Components to
CNT60” section to place the CD4CE, OR2, CB4CE, INV, and AND4
components on the schematic sheet as shown in Figure 2-8. For a
detailed description of the functionality of each of these components,
refer to the Xilinx Libraries Guide.

Drawing Wires

Use the Add Wire icon in the Tools toolbar to draw wires (also called
nets) between the various components on the schematic.

Signals can be logically connected by naming multiple segments
identically. In this case, the nets do not need to be physically
connected on the schematic to make the logical connection. In the
CNT60 schematic, you will draw wires to connect the components
together. The nets for the LSBSEC and MSBSEC buses will be drawn
in the next section.

Perform the following steps to draw a net between the AND2 and the
CB4CE components on the CNT60 schematic.

1. Select Add → Wire or click the Add Wires icon in the Tools
toolbar.

Figure 2-9 Add Wires Icon

2. Click the source symbol pin (output pin of the AND2), then click
the destination pin (CE pin on the CB4CE). The net will
automatically be drawn between the two pins.

Note: To specify the shape of the net, move the mouse in the direction
you want to draw the net and then click the mouse to create a 90-
degree bend in the wire.

Draw the nets to connect the remaining components as shown in the
Figure 2-8. Net names will be added in a later section. To draw a net
between an already existing net and a pin, click once on the
component pin and once on the existing net. A junction point will be
drawn on the existing net.
2-22 Xilinx Development System

Schematic-Based Design
You should now have all the nets drawn except those connected to
the LSBSEC and MSBSEC buses. You will draw these in the next
section.

Adding Buses

In ECS, a bus is simply a wire which has been given a multi-bit name.
In order to add a bus follow the same methodology for adding wires
and then add the proper name. Once a bus has been created, you
have the option of “tapping” this bus off to use each signal
individually.

In this CNT60 schematic, create two buses called LSBSEC(3:0) and
MSBSEC(3:0), each comprised of the 4 output bits of each counter.
Then connect an I/O marker to each bus in order to connect them to
the CNT60 symbol. The results can be found in the completed
schematic.

To add the buses, LSBSEC(3:0) and MSBSEC(3:0), to the schematic,
perform the following steps:

1. Select Add → Wire or click the Add Wires icon in the Tools
toolbar.

2. Click to the right of the CB4CE and draw a wire down and to the
right of the symbol.

3. Terminate the wire one of two ways:

• Double-click the mouse.

• Single-click with the right mouse button.

To change the wire into a bus, the wire must be named.

4. Select Add → Net Name or click the Add Net Name icon in the
Tools toolbar.

Figure 2-10 Add Net Name Icon

5. With the keyboard enter ‘msbsec(3:0)’ and hit enter.

This will attach the bus name to the cursor.
ISE 4 In-Depth Tutorial 2-23

ISE 4 In-Depth Tutorial
6. Click the end of the bus to apply the name.

This will change the wire into a bus.

7. To verify this, zoom in. The bus is represented visually by a
thicker wire.

Figure 2-11 Creating a Bus by Name

Repeat Steps 2 through 7 for the LSBSEC(3:0) bus.

8. After adding the two buses, press Esc or right-click to exit the
Draw Buses mode.

Adding Bus Taps

Next, add nets to attach the appropriate pins from the CB4CE and
CD4CE counters to the buses. Use Bus Taps to tap off a single bit of a
bus and connect it to another component. The Schematic Capture tool
names the bus taps incrementally as they are drawn.

Note: Enlarging the view of the schematic will enable greater
precision when drawing the nets.
2-24 Xilinx Development System

Schematic-Based Design
To tap off a single bit of each bus:

1. Select Add → Bus Tap or click the Add Bus Tap icon in the Tools
toolbar.

Figure 2-12 Add Bus Tap Icon

The cursor changes, indicating that you are now in
Draw Bus Taps mode.

2. In the options toolbar, choose the correct orientation for the bus
so that the bottom of the triangle is placed on the bus. The other
side of the bus should now be pointing to an unconnected pin.

Repeat steps 1 & 2 to tap off the other three bits of the bus.

To connect each of the tap off bits:

1. Select Add → Wire or click the Add Wire icon in the Tools
toolbar.

2. Draw a wire from the other end of the bus taps to the
corresponding pins.

3. Select Add → Net Name or click the Add Net Name icon in the
Tools toolbar.

4. Type in ‘msbsec(0)’ in the blank area of the options toolbar.

The net name is now at the end of your cursor.

5. Increment subsequent net names by changing Keep Name to
Increment Name in the add net name option toolbar.

Note: Alternatively, name the first net msbsec(3) and decrement as
nets are named from the bottom up.

6. With the Increment Name option selected, start at the top net and
continue clicking down until you have named the fourth and
final net msbsec(3).

Repeat Steps 1 through 6 for the lsbsec(3:0) bus.

7. Press Esc or right-click to exit the Draw Bus Taps mode.
ISE 4 In-Depth Tutorial 2-25

ISE 4 In-Depth Tutorial
8. Complete the schematic by drawing the nets to connect the
msbsec bus taps to the INV and AND4 components. If necessary,
refer to “Drawing Wires” for guidance.

9. Compare your CNT60 schematic again with the Figure 2-8 to
ensure that all connections are made properly.

Note: If the nets appear disconnected, select View → Redraw to
refresh the screen.

Adding Net Names

Next, add net names to the clk, clr, and ce nets.

1. Select Add → Net Name or click the Add Net Name icon in the
Tools toolbar.

2. In the Options toolbar, enter ‘clk’ into the empty box then move
the cursor back to the schematic.

Figure 2-13 Options Toolbar for Add Net Name

Note: The Options toolbar changes depending on which tool you
have selected in the Tools toolbar.

The net name clk is now attached to the cursor.

3. Click the end of the clk net.

The name is then attached to the end of the net. If the net name is
not attached to the end of the net but appears above the net,
delete the net name and repeat the process.

4. Repeat steps 1-3 for ce and clr.

Adding I/O Markers

I/O markers are used to determine the ports on a macro or the top
level schematic. Add I/O markers to the CNT60 schematic to
determine the macro ports.
2-26 Xilinx Development System

Schematic-Based Design
Follow these steps to add the I/O markers as shown in Figure 2-8.

1. Select Add → I/O Marker.

The I/O marker dialog box opens.

2. Select input.

3. Click and drag a box around the following nets: clk, ce, and clr.

4. Change the marker type to output in the Options toolbar and add
a marker to the msbsec(3:0) and lsbsec(3:0) nets.

Saving the Schematic
The CNT60 schematic is now complete.

Save the schematic by selecting File → Save or clicking the Save
icon in the toolbar.

Creating the CNT60 symbol
The symbol representing the CNT60 schematic will now be created in
Project Navigator.

1. In the Sources in Project window, select cnt60.sch.

2. In the Processes for Current Source window, click the + beside
Design Entry Utilities to expand the hierarchy.

3. Double-click Create Schematic Symbol.
ISE 4 In-Depth Tutorial 2-27

ISE 4 In-Depth Tutorial
Placing the CNT60 Macro
So far, you have created the CNT60 macro. The next step is to place
this macro on the top-level Watch schematic sheet, where it may then
be connected to other components in the design.

1. Open the Watch schematic sheet by double-clicking
stopwatch.sch in the Sources in Project window.

2. Select the Add Symbol icon to open the Symbol Browser dialog
box.

Figure 2-14 Add Symbol Icon

3. Select the Local Symbols library and find the newly created
CNT60 macro in this list. Select this component.

4. Place the CNT60 macro as shown below.

Figure 2-15 Placing the CNT60 Macro

5. Right-click to release this symbol and select another. Notice that
the Symbol Browser window remains open if floating. With this
window open, you can quickly place additional symbols without
having to click the Add Symbol icon again.

6. To close the Symbols window, click the X in the upper right
corner of the window or redock it to the right of the application.

Note: Do not worry about connecting nets to the pins of the CNT60
symbol. You will do this after adding other components to the Watch
schematic.
2-28 Xilinx Development System

Schematic-Based Design
Creating a CORE Generator Module
CORE Generator is a graphical interactive design tool you use to
create high-level modules such as counters, shift registers, RAM and
multiplexers. You can customize and pre-optimize the modules to
take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions,
and on-chip RAM for dual-port and synchronous RAM.

In this section, create a CORE Generator module called Tenths. Tenths
is a 4-bit binary encoded counter. The 4-bit number is then decoded to
count the tenths digit of the stopwatch’s time value.

Creating the Core Generator module

Select the type of module you want and the specific features of the
module in the CORE dialog box. To invoke this dialog box:

1. In Project Navigator, select Project → New Source.

2. Select Coregen IP, enter ‘tenths’ in the File Name field.

3. Click Next and then Finish.

The Xilinx CORE Generator 4.1i opens and displays a list of
possible COREs available.

4. Double-click Basic Elements - Counters.

5. Double-click Binary Counter to open the Binary Counter
dialog box. This dialog box allows you to customize the counter
to the design specifications.

6. Fill in the Binary Counter dialog box with the following settings:

• Component Name: tenths

Defines the name of the module.

• Output Width: 4

Defines the width of the output bus.

• Operation: Up

Defines how the counter will operate. This field is dependant
on the type of module you select.
ISE 4 In-Depth Tutorial 2-29

ISE 4 In-Depth Tutorial
• Count Style: Count by Constant

Allows counting by a constant or a user supplied variable.

• Count Restrictions: Enable and Count To Value A (HEX)

This dictates the maximum count value.

• Threshold Options: Threshold 0 set to A

Signal goes high when the value specified has been reached.

• Threshold Options: Registered

7. Click the Register Options button to open the Register
Options dialog box.

8. Enter the following settings.

• Clock Enable: Selected

• Asynchronous Settings: Init with a value of 1.

• Synchronous Settings: None

9. Click OK.

10. Check that only the following pins are used.

• AINIT

• CE

• Q

• Q_Thresh0

• CLK
2-30 Xilinx Development System

Schematic-Based Design
Figure 2-16 CORE Generator Module Selector

11. Click Generate.

The module is created and automatically added to the project
library.
ISE 4 In-Depth Tutorial 2-31

ISE 4 In-Depth Tutorial
Note: A number of files are added to the project directory. These files
are:

• tenths.edn

This file is the netlist that is used during the Translate phase
of implementation.

• tenths.vhd or tenths.v

This is the instantiation template that is used to incorporate
the CORE Generator module in your source HDL.

• tenths.xco

This file stores the configuration information for the Tenths
module and is used as a project source.

• coregen.prj

This file stores the Coregen configuration for the project.

12. Select Dismiss and close CORE Generator.

Creating a State Machine Module
With VSS State CAD, you can graphically create finite state machines:
states, inputs/outputs, and state transition conditions. Transition
conditions and state actions are typed into the diagram using
language independent syntax. The State Editor then exports the
diagram to either VHDL, Verilog or ABEL code. The resulting HDL
file is finally synthesized to create a netlist and/or macro for you to
place on a schematic sheet.

For this tutorial, a partially complete state machine diagram is
provided. In the next section, complete the diagram and synthesize
the module into a macro to place on the Watch schematic. A
completed VHDL State Machine diagram has been provided for you
in watch_sc.

Opening the State Editor

You can invoke VSS State CAD from Project Navigator New Source
Wizard for new diagrams. The tutorial utilizes an existing diagram
which you will complete.

To open the diagram, double-click stmach_v.dia, which opens State
CAD and loads state machine.
2-32 Xilinx Development System

Schematic-Based Design
Figure 2-17 Incomplete State Machine Diagram

In the incomplete state machine diagram above:

• The circles represent the various states.

• The black expressions are the transition conditions, defining how
you move between states.

• The output expressions for each state are contained in the circle
representing the state.

In the state machine diagrams, the transition conditions and the state
actions are written in language independent syntax and then
exported to Verilog, VHDL, or ABEL.

In the following section, add the remaining states, transitions,
actions, and a reset condition to complete the state machine.
ISE 4 In-Depth Tutorial 2-33

ISE 4 In-Depth Tutorial
Adding New States

Complete the state machine by adding a new state called CLEAR.

1. Click the Draw State icon in the vertical toolbar.

The state bubble is now attached to the cursor.

2. Place the new state on the left-hand side of the diagram as shown
Figure 2-18. Click the mouse to place the state bubble.

3. The state is given a default name, in this case STATE0. Double-
click the STATE0 in the state bubble, and change the name of the
state to CLEAR.

Note: The name of the state is for your use only; it does not affect the
synthesis, and so you can name it whatever you want.

4. Click OK.

Figure 2-18 Adding the CLEAR State
2-34 Xilinx Development System

Schematic-Based Design
To change the shape of the state bubble, click the bubble and drag it
in the direction you wish to “stretch” the bubble.

Adding a Transition

A transition defines the movement between states of the state
machine. Transitions are represented by arrows in the editor. You will
be adding a transition from the CLEAR state to the ZERO state in the
following steps. Because this transition is unconditional, there is no
Transition Condition associated with it.

1. Click the Draw Transitions icon in the vertical toolbar.

2. Click twice on the clear state, once to select it, then once to start
the transition.

3. Click the zero state to complete the transition arrow.

4. To manipulated the arrow’s shape, click it and drag the mouse.

Figure 2-19 Adding State Transition
ISE 4 In-Depth Tutorial 2-35

ISE 4 In-Depth Tutorial
5. Click the Select Objects icon in the vertical toolbar.

Adding a State Action

A State Action dictates how the outputs should behave in a given
state. You will add two state actions to the CLEAR state, one to drive
the CLKOUT output to 0, and one to drive the RST output to 1.

To add a State Action:

1. Double-click the State.

The Edit State dialog box opens and you can begin to create the
desired outputs.

Figure 2-20 Edit State Dialog Box

2. Select the Output Wizard.

3. In the Output Wizard, select the following values:

DOUT = clkout, CONSTANT = ‘0’;

DOUT = rst, CONSTANT = ‘1’;

Click OK to enter each individual value.

4. Click OK to exit the Edit State dialog box. The outputs are now
added to the state.
2-36 Xilinx Development System

Schematic-Based Design
Figure 2-21 Adding State Outputs

Adding a State Machine Reset Condition

Using the State Machine Reset, you specify a reset condition for the
State Machine. The state machine initializes to this specified state and
enters the specified state whenever the reset condition is met. In this
design, you add a Reset condition which sends the state machine to
the CLEAR state whenever the RESET signal is asserted.

1. Click the Draw Reset icon in the vertical toolbar.

2. Click the diagram near the CLEAR state, as shown in the diagram
below.

3. The cursor is automatically attached to the transition arrow for
this Reset. Move the cursor to the CLEAR state, and click the state
bubble.
ISE 4 In-Depth Tutorial 2-37

ISE 4 In-Depth Tutorial
4. A question is then asked, “Should this reset be
asynchronous(Yes) or synchronous(No)?” Answer yes.

Figure 2-22 Adding Reset

5. Save your changes by selecting File → Save.

Creating the State Machine Macro

In this section, create the HDL code used to create a macro symbol
that you can place on the Watch schematic. The macro symbol will
automatically be added to the project library. Creation of the macro
includes the creation of the HDL code from the state machine
diagram.

1. Select Options → Compile(Generate HDL).

State CAD verifies the state machine and displays the results.

2. Review the results and close the dialog.

State CAD will then create the HDL code and open a browser
displaying the code.

3. Close the browser when you have finished examining the code.

4. Close State CAD.

5. In Project Navigator, select Project → Add Source.
2-38 Xilinx Development System

Schematic-Based Design
6. Select stmach_v.vhd which is the VHDL file generated by State
CAD.

7. Click Open.

8. Select VHDL module as the source type.

9. Click OK.

The file stmach_v.vhd is added to the project.

10. Select stmach_v.vhd.

11. Double-click Create Schematic Symbol under the Design Entry
Utilities in the Processes for Current Source window.

Placing the STMACH, Tenths, and decode symbols

You can now place the STMACH, Tenths, and decode symbols on the
Watch schematic.

1. If it is not already opened, open the Schematic Editor.

2. View the list of available library components in the Symbol
Browser window.

You should now be able to locate the macros in the Local Symbols
library.

3. Select the appropriate symbol, and add it to the Watch schematic
as shown below.

Note: Do not worry about drawing the wires to connect this symbol.
You will connect the entire schematic later in the tutorial.

4. Save the schematic.
ISE 4 In-Depth Tutorial 2-39

ISE 4 In-Depth Tutorial
Figure 2-23 Placing the State Machine Macro

Creating an HDL-Based Module
With ISE, you can easily create modules from HDL code. The HDL
code is connected to your top-level HDL design through instantiation
and compiled with the rest of the design.

In this tutorial, create a new HDL module. This macro serves to
convert the two 4-bit outputs of the CNT60 module into a 7-segment
LED display format.

Using the HDL Design Wizard and HDL Editor

Enter the name and ports of the component in the HDL Wizard and
the Wizard creates a “skeleton” HDL file which you can complete
with the remainder of your code.

1. Select Project → New Source.

2. A dialog box opens, asking what type of source you want to
create. Select VHDL or Verilog Module.

3. In the File Name field, type ‘hex2led’.

4. Click Next.

The hex2led component has a 4-bit input port named HEX and a
7-bit output port named LED.

5. To enter these ports, click in the Port Name field and type HEX.

6. Click in the Direction field and set the direction to in.
2-40 Xilinx Development System

Schematic-Based Design
7. In the MSB field, enter 3, and in the LSB field, enter 0.

Figure 2-24 HDL Wizard

8. Repeat the previous steps for the LED(6:0) output bus. Be sure
that the direction is set to out.

9. Click Next to complete the Wizard session.

A description of the module is now displayed.

10. Click Finish to open the “skeleton” HDL file in the HDL Editor.
ISE 4 In-Depth Tutorial 2-41

ISE 4 In-Depth Tutorial
Figure 2-25 Skeleton VHDL File

Figure 2-26 Skeleton Verilog File

In the HDL Editor, the ports are already declared in the HDL file, and
some of the basic file structure is already in place. Keywords are
printed in blue, data types in red, comments in green, and values are
black. This color-coding enhances readability and recognition of
typographical errors.
2-42 Xilinx Development System

Schematic-Based Design
Using the Language Templates

The ISE language templates are HDL constructs and synthesis
templates which represent commonly used logic components, such as
counters, D flip-flops, multiplexers, and primitives. You can add your
own templates to the Language Templates for components or
constructs you use often.

To invoke the Language Assistant and select the template for this
tutorial:

1. Select Edit→ Language Templates.

Each HDL language in the Language Template is divided into
four sections: Component Instantiations, Language Templates,
Synthesis Templates, and User Templates. To expand the view of
any of these sections, click the + next to the topic. Click any of the
listed templates to view the template in the right hand pane.

2. Use the template called HEX2LED Converter located under the
Synthesis Templates heading for VHDL or Verilog. Use the
appropriate template for the language you are using.

3. To preview the HEX2LED Converter template, click the template
in the hierarchy and the contents are displayed in the right-hand
pane.

This template provides source code to convert a 4-bit value to 7-
segment LED display format.
ISE 4 In-Depth Tutorial 2-43

ISE 4 In-Depth Tutorial
Figure 2-27 Language Templates

There are three ways of adding templates to your HDL file:

• Cut and paste contents directly from the Language Template.

• Drag and drop from the Language Template.

• The right-click menu, click Copy, then Paste.

The tutorial describes the drag and drop method.
2-44 Xilinx Development System

Schematic-Based Design
4. In the Language Template, click and drag the HEX2LED
Converter name into the hex2led.vhd under the architecture
begin statement or the hex2led.v file under the module
declaration.

5. Close the Language Assistant by clicking the X in the upper-right
corner of the window.

6. (Verilog only) After the input and output statements and before
the HEX2LED converter that you just added, add the following
line of code to the HDL file to allow an assignment.

reg LED;

You now have complete and functional HDL code.

7. Save the file by selecting File → Save.

8. Select hex2led in the Sources in Project window and double-click
the Check Syntax under Synthesize in the Processes for Current
Source window.

9. Exit the HDL Editor.

Creating the HEX2LED symbol

The symbol representing the HEX2LED VHDL is created in Project
Navigator.

1. In the Sources in Project window, select hex2led.vhd.

2. In the Processes for Current Source window, click the + beside
Design Entry Utilities to expand the hierarchy.

3. Double-click Create Schematic Symbol.
ISE 4 In-Depth Tutorial 2-45

ISE 4 In-Depth Tutorial
Adding the HEX2LED Component to the Schematic

You are now ready to place the HEX2LED macro on the Watch
schematic.

1. Open the Schematic Editor if it is not already open.

2. Open the Symbols Libraries dialog (refer to the “Adding
Components to CNT60” section) to view the list of available
library components.

You should now be able to locate the HEX2LED macro in this list.

3. Select HEX2LED, and add it to the Watch schematic, as shown in
Figure 2-28.

This component will be placed on the Watch schematic sheet in two
separate instances.

To duplicate the component in the schematic:

1. Click the left mouse button while the pointer is on the placed
symbol.

2. Click again to place the duplicate symbol.

Note: The Symbol Libraries icon must still be depressed on the Tools
toolbar to enable this feature to automatically duplicate a symbol.

Again, do not worry about drawing the wires and buses to connect
this macro. You will connect the entire schematic later in the tutorial.

Figure 2-28 Placing the HEX2LED Component
2-46 Xilinx Development System

Schematic-Based Design
Specifying Device Inputs/Outputs
When specifying device I/O on a schematic sheet, use the I/O
Marker. All ECS schematics are netlisted to VHDL or Verilog and
then synthesized by the synthesis tool of choice. When the synthesis
tool synthesizes the top level HDL, the I/O markers are replaced with
the appropriate pads and buffers.

Note: I/O components are contained in the Xilinx Unified Library
and can be added to the schematic sheet; however, special
considerations must be made.

• I/O macros are not recognized by the synthesis tool, therefore a
duplicate buffer will be inserted. To avoid this use I/O primitives
only.

• Global buffers, for example BUFG, are not recognized by the
implementation tools, therefore a pad is not inserted and the
logic is trimmed. To avoid this place a IBUF in front of the BUFG.

Hierarchy Push/Pop

Descend into a lower-level of hierarchy to view the underlying file.
You will be pushing down into the OUTS3 macro, which is a
schematic-based user-created macro.

To push down into OUTS3:

1. Select the symbol, then click the Hierarchy Push/Pop icon or
right-click the macro and click Push into Symbol.

Figure 2-29 Hierarchy Push/Pop Icon

In the OUTS3 schematic, you see a series of inverters (INV) and
output buffers (OBUF). This macro illustrates that you can place
I/O buffers in a lower level macro. The output buffers are not
required because the synthesis tool will insert buffers if one is not
found.
ISE 4 In-Depth Tutorial 2-47

ISE 4 In-Depth Tutorial
Figure 2-30 OUTS3 Schematic Macro

2. “Pop” back out of the OUTS3 component by clicking the
Hierarchy Push/Pop icon.
2-48 Xilinx Development System

Schematic-Based Design
Adding Input Pins

Add three more input pins to the Watch schematic, called CLK,
RESET and STRTSTOP.

Add an IBUF for each of the two input pins, RESET and STRTSTOP.
Add an IBUF and a BUFG for the input clock signal, CLK. To add
these components:

1. Click the Add Symbol icon in the toolbar to open the Symbol
Browser dialog.

2. Browse to locate the IBUF, INV, and BUFG components in the
library.

3. Drop these on the schematic as shown below.

4. Draw a net between the IBUF, INV, and BUFG inputs and
outputs. If necessary, refer to the section on drawing nets (see the
“Drawing Wires” section) for instructions.

5. Draw a net to the input of each IBUF.

Figure 2-31 Placing CLK, RESET and STRTSTOP I/O
Components
ISE 4 In-Depth Tutorial 2-49

ISE 4 In-Depth Tutorial
Adding I/O Markers and Net Names
It is important to label nets and buses for several reasons.

• It aids in debugging and simulation, as you will more easily trace
nets back to your original design.

• Any nets which remain unnamed in the design will be given
machine-generated names which will mean nothing to you later
in the implementation process.

• Naming nets also enhances readability and aids in documenting
your design.

Label the three input nets you just drew as illustrated in the
completed schematic.

1. Select Add → Net Name.

The options toolbar changes to the following:

Figure 2-32 Options Toolbar for Add Net Name

2. Type the name of the net into the empty box.

The net name is now attached to the cursor.

3. Place the name on the leftmost end of the net as illustrated in
Figure 2-33.

4. Repeat Steps 1 through 3 for the STRTSTOP and CLK pins.

Once all of the nets have been labeled, add the I/O marker.

5. Select Add → I/O Marker.

6. In the I/O marker Options toolbar, select input then draw a box
around the three labeled nets.
2-50 Xilinx Development System

Schematic-Based Design
Figure 2-33 Labeled Nets

Assigning Pin Locations
Xilinx recommends that you let the automatic placement and routing
program, PAR, define the pinout of your design. Pre-assigning
locations to the pins can sometimes degrade the performance of the
place and route tools. However, it is usually necessary, at some point,
to lock the pinout of a design so that it can be integrated into a PCB
(Printed Circuit Board).

Define the initial pinout by running the place-and-route tools without
pin assignments, then locking down the pin placement so that it
reflects the locations chosen by the tools. Because this design is
simple and timing is not critical, the example pin assignments will
not adversely affect the ability of PAR to place and route the design.

Specify pin locations by attaching a LOC parameter to a buffer
component or I/O net. Assign a LOC parameter to the RESET net on
the Watch schematic as follows.

1. Right-click either the RESET I/O marker, or the net connected to
it, then select Object Properties.

2. Click the New button in under Net Attributes to add a new
property.

3. Enter LOC for the Attribute Name and A2 for the Attribute
Value.

4. Click OK to return to the Object Properties dialog box, and click
OK once more to return to the schematic.
ISE 4 In-Depth Tutorial 2-51

ISE 4 In-Depth Tutorial
Figure 2-34 Assigning Pin Locations

To view the location constraint on the net add a net attribute window.

5. Select Add → Attribute Window.

6. Type LOC in the Attribute Name dialog.

7. Move the cursor to the RESET net connected to the I/O marker,
and click anywhere on the net.

8. Repeat steps 1 through 4 to assign the STRTSTOP input to pin A5
and the CLK input to pin A3.
2-52 Xilinx Development System

Schematic-Based Design
Completing the Schematic
Complete the schematic by wiring the components you have created
and placed, adding any additional necessary logic, and labeling nets
appropriately. The following steps guide you through the process of
completing the schematic, or you may want to use the completed
schematic shown below for guidance. Each of the actions in this
section has been discussed in detail in earlier sections of the tutorial.
If you need to review these sections, you may return to them. The
finished schematic is shown in the following figure as a guide.

Figure 2-35 Completed Watch Schematic

1. Draw a net (see the “Drawing Wires” section) between the BUFG
and the CLK pin of the STMACH state machine macro.

2. Label this net CLK_INT.
ISE 4 In-Depth Tutorial 2-53

ISE 4 In-Depth Tutorial
3. Draw a net (see the “Drawing Wires” section) between the IBUF
of the RESET input and the RESET pin of the STMACH state
machine macro.

4. Place an INV (inverter) component (see the “Adding
Components to CNT60” section) from the Virtex library between
the IBUF of the STRTSTOP input and the STRTSTOP pin of the
STMACH state machine macro.

5. Draw nets (see the “Drawing Wires” section) to connect the INV
to both the IBUF and the STMACH state machine macro.

6. Place an AND2 component (see the “Adding Components to
CNT60” section) to the left of the CNT60 macro.

7. Draw a net (see the “Drawing Wires” section) to connect the
output of the AND2 with the CE pin of the CNT60 macro.

8. Draw a net (see the “Drawing Wires” section) to connect the
Q_THRES0 pin of the TENTHS macro to one of the inputs to the
AND2.

9. Draw a hanging net (see the “Drawing Wires” section) from the
CLKOUT pin of the STMACH macro. To terminate a hanging
wire, double-click.

10. Name the new added net CLKEN_INT.

11. Draw a hanging net at the CLK_EN input pin of the TENTHS
macro. Label this net CLKEN_INT (see the “Adding I/O Markers
and Net Names” section).

12. Draw a hanging net (see the “Drawing Wires” section) at the
other input of the AND2 component. Label this net CLKEN_INT
again (see the “Adding I/O Markers and Net Names” section).

13. Draw a hanging net (see the “Drawing Wires” section) from the
RST output pin of the STMACH macro.

14. Label this net RST_INT.

15. Draw two more hanging nets (see the “Drawing Wires” section),
also named RST_INT, from the AINIT pin of the TENTHS macro
and from the CLR pin of the CNT60 macro.

16. Draw two hanging nets (see the “Drawing Wires” section), each
named CLK_INT, from the CLOCK pin of the TENTHS macro
and from the CLK pin of the CNT60 macro.
2-54 Xilinx Development System

Schematic-Based Design
Note: Remember that nets are logically connected if their names are
the same, even if the net is not physically drawn as a connection in
the schematic. This method is used to make the logical connection of
the RST_INT, CLKEN_INT and CLK_INT signals.

17. Draw buses (see the “Adding Buses” section) to complete the
schematic. Label them as shown on the preceding schematic
diagram.

The schematic is now complete!

18. Save the design by selecting File → Save.
ISE 4 In-Depth Tutorial 2-55

ISE 4 In-Depth Tutorial
2-56 Xilinx Development System

Chapter 3

Behavioral Simulation

You can perform behavioral (also called functional) simulation before
design implementation to verify that the logic that you have created
is correct. Xilinx ISE provides integration with any ModelSim
Simulator (ISE produces generic HDL netlists that work with most
HDL simulators; however, the integrated flow is only available with
MTI ModelSim). You can perform behavioral simulation on a
schematic-based or HDL-based design. In a later section, you can
perform timing simulation, which takes place after the design is
implemented (placed and routed) with the Xilinx Implementation
Tools.

This chapter contains the following sections.

• “Overview of Behavioral Simulation Flow”

• “Adding an HDL Testbench”

• “Creating a Testbench Waveform using HDL Bencher”

• “Behavioral Simulation using ModelSim”

Overview of Behavioral Simulation Flow
Behavioral simulation is an integral part of any HDL design flow as it
enables a logical (functional) check of the design before any
additional time is invested in Synthesis and Implementation. Xilinx
ISE 4 provides a tightly integrated functional simulation flow with
any version of ModelSim (release 5.4 and newer).

Using ISE, behavioral simulation can be conducted using either a
hand-written HDL testbench (PC and Unix), or one generated
automatically by Xilinx HDL Bencher (PC Only).
ISE 4 In-Depth Tutorial 3-1

ISE 4 In-Depth Tutorial
Note: Since Xilinx HDL Bencher is only available on the PC platform,
Unix machine users should skip the automated testbench generation
section which uses HDL Bencher. PC users can choose either flow.

Required Files
The funtional simulation flow requires the following files:

• Design files (VHDL, Verilog, or Schematic). These are produced
by the designer, or from a HDL generation tool such as Xilinx
StateCAD.

• Stimulus file, known as the testbench (VHDL, Verilog).
Testbenches can be hand-written or produced using Xilinx HDL
Bencher. To produce a testbench using HDL Bencher, refer to the
HDL Bencher section in this chapter. The HDL Bencher flow is
only available on the Windows platforms.

• ModelSim Script file to run the simulation (optional).
Alternatively, the commands can be entered one-by-one into the
simulator. Xilinx ISE creates the script file needed to run
simulation in ModelSim.

• Xilinx Simulation Libraries, if any Xilinx primitive is instantiated
in the design. More details on the libraries and how to compile
them is provided in the next section.

Xilinx Simulation Libraries
To simulate designs containing Xilinx primitives with ModelSim in
VHDL (or Verilog), you need the following simulation libraries which
you must compile.

Unisims Library

The Unisim library is used for behavioral (RTL) simulation with
instantiated components in the netlist, and for post-synthesis
simulation. The recommended mapping name for the VHDL Unisims
library is UNISIM and for the Verilog Unisims library is
UNISIMS_VER. Additionally, there is a separate Unisims library in
Verilog for simulating CPLD designs. This library is called UNI9000
and the recommended mapping name for this library is UNI9000.
3-2 Xilinx Development System

Behavioral Simulation
LogiBLOX Library (VHDL Only)

The LogiBLOX library is used for designs containing LogiBLOX
components, during pre-synthesis (RTL), and post-synthesis
simulation. Since LogiBLOX models are not supported in Virtex, this
library will not be used in this tutorial.

XilinxCoreLib Library

The XilinxCoreLib library must be used if a CoreGEN component is
instantiated in the design. The recommended mapping name for the
VHDL library is XILINXCORELIB where as the recommended
mapping name for Verilog is XILINXCORELIB_VER.

All VHDL simulation libraries are provided at $XILINX/vhdl/src
and all Verilog simulation libraries are provided at $XILINX/
verilog/src.

For detailed instructions on compiling these libraries, see Xilinx Solu-
tion # 2561, which can be accesed as follows:

1. Go to http://support.xilinx.com.

2. Enter ‘2561’ in the search box, and check to see that the search
engine is pointing to Answer Records.

3. Click OK.

Solution 2561 will be displayed on the next page.

4. Click Solution 2561 on the next page.

Before compiling the libraries, notice that there is a file called
modelsim.ini in the ModelSIM install directory. View this file and
notice that the upper portion defines the locations of the compiled
libraries. When doing a simulation, the modelsim.ini file must be
provided either by copying the file directly to the directory where the
HDL files are to be compiled and the simulation is to be run, or by
setting the MODELSIM environment variable to the location of your
master .ini file. You must set this variable since the ModelSim
installation does not initially declare the path for you.

For UNIX, type the following environment variable:

setenv MODELSIM /path/to/the/modelsim.ini
ISE 4 In-Depth Tutorial 3-3

http://support.xilinx.com

ISE 4 In-Depth Tutorial
For PCs, set the MODELSIM environment variable to path where the
modelsim.ini file is located in a similar fashion. To set the
environment variable, go to Start → Settings → Control
Panel → System → Environment.

Adding an HDL Testbench
This section demonstrates how to add pre-existing testbench files to
the project. This design flow is for users of UNIX machines who
cannot generate testbenches using HDL Bencher. PC machine users
can choose to use hand-written testbenches for their design.

The testbench must be associated with the top-level design file in
order to successfully simulate the design.

VHDL design
For a VHDL design, add your testbench as follows:

1. Select Project → Add Source.

2. Select the testbench file stopwatch_tb.vhd and click Open.

The Choose Source Type dialog box opens.

3. Select VHDL Testbench and click OK.

ISE recognizes the top-level design file associated with the testbench
and adds the testbench in the correct order

Verilog design
For a Verilog design, add your testbench as follows. Ensure the
extension of the testbench file is .tf rather than .v.

1. Select Project → Add Source.

2. Select the testbench file stopwatch_tb.vhd and click Open.

ISE recognizes the top-level design file associated with the testbench
and adds the testbench in the correct order.
3-4 Xilinx Development System

Behavioral Simulation
Creating a Testbench Waveform using HDL Bencher
HDL Bencher is a PC-based testbench/test fixture creation tool that is
part of ISE 4. This tool allows you to graphically enter stimulas and
the expected response, then generates a VHDL testbench or Verilog
test fixture.

Creating a Testbench Waveform Source
Use the following procedure to create a testbench/test fixture with
HDL Bencher.

1. Select stopwatch in the Sources in Project window.

2. Select Project → New Source from the Project Navigator
menu.

3. In the New dialog box, select Test Bench Waveform as the source
type.

4. Type the name ‘stopwatch_tb’.

5. Select Next.

Note: In the Select dialog box, the stopwatch file is the default source
file because it is selected in the Sources in Project window (step 1).

6. Select Next and select Finish.

HDL Bencher is launched and you are prompted to specify the
timing parameters used during simulation. The clock high time
and clock low time together define the clock period for which the
design must operate. The Input setup time defines when inputs
must be valid. The Output valid delay defines the time after
active clock edge when the outputs must be valid.

For this tutorial, the defaults are used.

7. Click OK to accept the default timing constraints.

HDL Bencher now opens with two main windows. The top window
is the Waveform window. In this window, enter graphically
depictions of the stimulas and expected response. The bottom
window is the currently loaded HDL file.
ISE 4 In-Depth Tutorial 3-5

ISE 4 In-Depth Tutorial
Figure 3-1 HDL Bencher Windows

Initializing Inputs
Enter the following input stimulas:

1. Click the RESET cell under CLK cycle 1 to set it high.

2. Click the RESET cell under CLK cycle 5 to set it low.

3. Click the STRTSTOP cell under CLK cycle 30 to set it high.

4. Click the STRTSTOP cell under CLK cycle 33 to set it low.

5. Click the STRTSTOP cell under CLK cycle 39 to set it high.

6. Click the STRTSTOP cell under CLK cycle 41 to set it low.

7. Click the Save Waveform icon in the toolbar.
3-6 Xilinx Development System

Behavioral Simulation
Next, HDL Bencher will prompt you to set the number of clock
cycles for which you wish to simulate.

8. Enter 9 in the dialog box.

This extends the wavform 9 clock cycles past the assertion of
STRTSTOP low, for a total of 50 clock cycles for the testbench.

9. Click OK.

10. Exit HDL Bencher

The new testbench waveform source (stopwatch_tb.tbw) is
automatically added to the project. In future, you can open HDL
Bencher from Project Navigator by double-clicking on this file.

Generating Expected Results
Using HDL Bencher, you can generate expected outputs for the
stopwatch module based on the initialized inputs you entered.

1. Select stopwatch_tb in the Sources in Project window.

2. In the Processes for Current Sources window, click the + beside
ModelSim Simulator to expand hierarchy.

3. Double-click Generate Expected Simulation Results.

This process invokes ModelSim in the background and runs a
simulation using the inputs specified, generating output values
which are added to the testbench waveform.

4. In HDL Bencher, click on the Display in Binary icon in the toolbar
menu if it is not already selected. By doing this you can view
your results in binary rather than hexadecimal or decimal.

5. Using the scroll-bars and Zoom In/Out toolbar icons, compare
your new waveform to the one in Figure 3-2.

6. Exit HDL Bencher without saving the waveform.
ISE 4 In-Depth Tutorial 3-7

ISE 4 In-Depth Tutorial
Figure 3-2 Expected Response

Behavioral Simulation using ModelSim
ISE has full integration with any version of the ModelSim Simulator.
ISE provides work directory creation, source file compilation,
simulation initialization, and control over simulation properties.

Selecting Simulation Processes
Four simulation processes are available and are briefly defined in this
section.

To display the ModelSim Simulator Processes:

1. In the Sources in Project window, select stopwatch_tb.vhd
(stopwatch_tb.tf for Verilog).

2. Click the + beside ModelSim Simulator to expand this process
hierarchy.
3-8 Xilinx Development System

Behavioral Simulation
The following simulation processes are available:

• Simulate Behavioral VHDL (or Verilog) Model — This is the
process we will kick off to simulate our RTL design.

• Simulate Post-Translate VHDL (or Verilog) Model — This will
simluate the netlist after the NGDBUILD implementation stage.

• Simulate Post-Map VHDL (or Verilog) Model — This will
simulate the netlist after the Map implementation stage.

• Simulate Post-Place & Route VHDL (or Verilog) Model — This
will simulate the back-annotated netlist after Place & Route,
which contains the detailed timing information as well.

In this tutorial, you will perform a behavioral simulation on the
stopwatch design. But first, you must specify the process properties
for simulation.

Specifiying Simulation Properties
ISE allows you to set several MTI Simulator properties in addition to
the simulation netlist properties. In order to see which properties are
available for RTL simulation, step through the following command
sequence in ISE:

1. In the Sources in Project window, select stopwatch_tb.vhd
(stopwatch_tb.tf for Verilog).

2. Click the + sign next to ModelSim Simulator in the Processes For
Current Source window

3. Right-click on Simulate Behavioral VHDL (or Verilog) Model.

4. Select Properties.
ISE 4 In-Depth Tutorial 3-9

ISE 4 In-Depth Tutorial
The Process Properties dialog box (Figure 3-3) contains the following
simulation properties which can be specified or changed as indicated
below:

• Custom Do File — This option allows a different .do run
script to specified.

• Use Automatic Do File — When unchecked, this option will
bring up ModelSim but not automatically run the processes
required to simulate the design. You will have to manually
run the .do file from ModelSim or enter the commands one-
by-one to run simulation.

• Simulation Run Time — Specifies default time for which
simulation is run.

• Simulation Resolution — This is set to 1 ps by default, but
can be changed as required.

• Design Unit Name — This property allows you to specify the
top-level model to be loaded in ModelSim. This property
must be changed if the top level entity, configuration, or
module is named something different than testbench.

The Second tab in this GUI is for selecting Display Properties.
Using this tab, you can select which ModelSim Simulation
windows will automatically be invoked. By default, the Signals,
Structure and Wave windows are invoked. For more details on
ModelSim Simulator windows, refer to the ModelSim User
Manual.
3-10 Xilinx Development System

Behavioral Simulation
Figure 3-3 Process Properties Dialog Box

Performing Simulation
Once the process properties have been set, you are ready to run
ModelSim.

To start the behavioral simulation:

1. Double-click Simulate Behavioral VHDL (or Verilog) Model
under the ModelSim Simulation process.

ModelSim creates the work directory, compiles the source files, loads
the design and performs simulation for the time specified.

There are two basic steps to simulate your design:

• “Adding Signals”

• “Saving the Simulation”

There are several different ways to perform each of these steps. These
methods are discussed briefly in the following sections.
ISE 4 In-Depth Tutorial 3-11

ISE 4 In-Depth Tutorial
Adding Signals
In order to view signals during the simulation, you must first add
them to the Wave window. ISE automatically adds all of the top-level
ports to the Wave window. Additional signals are displayed in the
Signal window based upon the selected structure in the Structure
window.

There are two basic methods for adding signals to the Simulator
Wave window.

• Drag and drop from the Signal window.

• View → Wave → Selected Signals from the Signal window.

The following procedure explains how to add additional signals in
the design hierarchy. For the purpose of example, add the lsbsec and
msbsec signals in the cnt60 macro. To do so:

1. In the Structure window, click the + next to
uut:stopwatch(schematic).

Note: uut represents the instance in the testbench, stopwatch is the
component/entity name and schematic is the architecture name.
3-12 Xilinx Development System

Behavioral Simulation
Figure 3-4 Structure Window

2. Select i10:cnt60(schematic) in the Structure window.

Notice that the signals listed in the Signal window are updated.

3. Click and drag lsbsec from the Signal window to the Wave
window.

4. Select msbsec in the Signal window and select View → Wave →
Selected Signals to add the signal to the Wave window.

Notice that the waveforms have not been drawn for lsbsec or
msbsec.
ISE 4 In-Depth Tutorial 3-13

ISE 4 In-Depth Tutorial
There are two ways to add the waveforms for these signals:

• Continue with the simulation

• Restart the simulation.

To continue to run the simulation:

1. Click on the Continue Run icon on the toolbar.

Figure 3-5 Continue Run icon

To restart the simulation:

1. Click on the Restart Simulation icon.

Figure 3-6 Restart Icon

The Restart dialog box opens.

2. Click Restart.

3. (Optional) Select the Continue Run icon to re-run the simulation.

Saving the Simulation
The ModelSim Simulator provides the ability to save the signals list
in the Wave window. This can be important when additional signals
or stimulas have been added and the simulation must be restarted.
The saved signals list can easily be loaded each time the simulation is
started.

1. In the Wave window, select File → Save Format.

2. In the Save Format dialog box, change the default filename
wave.do to sec_signal.do.
3-14 Xilinx Development System

Behavioral Simulation
Figure 3-7 Save Format Dialog Box

3. Click Save.

In addition, the simulation results that appear in the waveform are
also saved. These are saved in a file called vsim.wlf, which is
produced by default in the ModelSim project directory (which is the
same as the ISE project directory for ISE-MTI projects). If this file
needs to be preserved, it must be copied or renamed, otherwise it will
be overwritten upon restart of simulation.

To view the contents of this file later, type the following commands
one-by-one at the ModelSim prompt:

Modelsim> vsim -view vsim.wlf

vsim> view wave

vsim> add wave *

The simulation output will then appear in the Wave window.

Restarting the Simulation
If you remember the original simulation resulted in errors between
the expected and actual response of the simulation. These errors are
the result of the reset signal being held high for too long. Close the
simulator by selecting File → Quit in the ModelSim window.
ISE 4 In-Depth Tutorial 3-15

ISE 4 In-Depth Tutorial
These errors can easily be fixed by changing the stimulas in HDL
Bencher. Open HDL Bencher by double-clicking on stopwatch_tb.tbw
in the Source Window of Project Navigator. This will open HDL
Bencher.

Figure 3-8 TBW File in Sources in Project Window

The following procedure explains how to make the changes and
restart the simulation.

1. In HDL Bencher, click the reset cell under clk cycle 4 to set it low.

2. Save the waveform.

3. Close HDL Bencher.

4. To restart the simulation by double-clicking on the Simulate
Behavioral VHDL (or Verilog) Model.

5. The Simulation will now complete without errors.
3-16 Xilinx Development System

Chapter 4

Design Implementation

Design Implementation is the process of translating, mapping,
placing, routing, and generating a BIT file for your design. The
Design Implementation tools are embedded into the ISE for easy
access and project management.

This chapter is the first in the “Implementation-only Flow”, and an
important chapter for the “HDL Design Flow” and the “Schematic
Design Flow.”

This chapter contains the following sections.

• “Installing the Tutorial Files”

• “Creating an Implementation Project”

• “Specifying Options”

• “Translating the Design”

• “Using the Constraints Editor”

• “Mapping the Design”

• “Using the Floorplanner”

• “Using Timing Analysis to Evaluate Block Delays After
Mapping”

• “Placing and Routing the Design”

• “Using FPGA Editor to Verify the Place and Route”

• “Evaluating Post-Layout Timing”

• “Creating Configuration Data”

• “Using the PROM File Formatter”
ISE 4 In-Depth Tutorial 4-1

ISE 4 In-Depth Tutorial
Installing the Tutorial Files
This chapter demonstrates the ISE Implementation flow. The front-
end design has already been compiled in an EDA interface tool and is
described by an EDIF Netlist File (EDF). For a listing of EDA
Interfaces, please reference the beginning of this tutorial. This tutorial
passes an input netlist from the front-end tool to the back-end Design
Implementation tools, and incorporates placement constraints
through a User Constraints File (UCF). Timing constraints are added
later through the Constraints Editor.

The tutorial design (Watch) is designed to perform like a track coach’s
stopwatch. There are two inputs to the system (RESET and SRTSTP).
The configuration clock on the device is used as a ten-hertz clock
signal. Three seven-bit outputs are generated by this system for
output to three seven-segment LED displays. There are two options
you can follow in this chapter’s tutorial:

• Option 1 is to have gone through the previous chapters and
synthesized the design to create the EDIF Netlist File. If you
choose this option, please proceed to the “Creating an
Implementation Project” section.

• Option 2 is to use the EDIF Netlist Files that are provided. If you
choose this option, please create a working directory with the
tutorial files as follows.

a) Create an empty working directory named Watch.

b) Copy the following files from http://support.xilinx.com/
support/techsup/tutorials/ directory into to your newly
created working directory.

Table 4-1 Required Tutorial Files

File Name Description

Stopwatch.edn or stopwatch.edf Input netlist file (EDIF)

Tenths.edn Counter netlist file (EDIF)

Watch.ucf User Constraints File
4-2 Xilinx Development System

Design Implementation
Creating an Implementation Project
This section describes how to create a project through ISE. The
process is the same for either Schematic or HDL designs.

To begin, use the following steps:

1. Perform one of the following:

• On a workstation, enter the following to start ISE: ise &

• On a PC, select the following to start ISE Project Navigator:
Start → Programs → Xilinx ISE 4 → Project
Navigator.

2. Proceed as follows:

• If you are continuing this project from the previous chapters,
please proceed to the “Specifying Options” section.

• If you are using the pre-synthesized design, create a new
project and add the (stopwatch) EDIF netlist, as follows;

a) Select File → New Project.

b) Type “EDIF Flow” for the Project Name. Select Virtex2
for the Device Family, xc2v40-5fg256 for the Device, and
EDIF for the Design Flow. Then select OK.

Figure 4-1 New Project Dialog Box
ISE 4 In-Depth Tutorial 4-3

ISE 4 In-Depth Tutorial
c) After the project is created, then right-click xc2v40-
5cs144.

d) Select Add Sources and select stopwatch.edf or
stopwatch.edn. Then select Open.

When you create a new project, you specify a design to
open and a directory for the project. You can create as
many projects as you want, but you can only work with
one at a time.

Figure 4-2 Selecting File in Sources in Project Window

3. In the Sources in Project window, select the top-level module,
stopwatch (edf or edn). This enables the design to be
implemented.

Specifying Options
In this section, you are going to set some options for implementation.
In each dialog box, you can select the Help button to read more about
the options and information regarding the dialog box. The
implementation options control how the software maps, places,
routes, and optimizes a design.
4-4 Xilinx Development System

Design Implementation
The implementation options for ISE is broken into two groups,
Standard and Advanced. The default setting is Standard, which
allows access to the most commonly used options. The Advanced
settings provide access to all implementation options.

1. To enable the Advanced Options, select Edit → Preferences.
In the Preferences dialog select the Processes Tab. Change the
Property Display Level from Standard to Advanced. Select OK.

Figure 4-3 Preferences Dialog Box

2. To set more implementation options, right-click Implement
Design, and select Properties. The Process Properties dialog
provides access to Translate, Map, Place and Route, and Timing
Report options.
ISE 4 In-Depth Tutorial 4-5

ISE 4 In-Depth Tutorial
Figure 4-4 Post-Place & Route Static Timing Report Properties

3. In the Place & Route Properties tab, change the Place & Route
effort level (overall) to Highest. This option increases the overall
effort level of Place and Route during implementation.
4-6 Xilinx Development System

Design Implementation
Figure 4-5 Place & Route Properties

4. In the Post-Place & Route Static Timing Report Properties tab,
change Report type to Verbose Report.

This option changes the type of report from an error report to a
verbose report. This report will be created after Place and Route
is completed.

5. Select OK to exit the Process Properties dialog box.

The User Constraints File (UCF) provides a mechanism for
constraining a logical design without returning to the design entry
tools. However, it requires that you understand the exact syntax
needed to define constraints. On the other hand, the Constraints
Editor is a graphical tool in the Xilinx Development System that
allows you to enter timing and pin location constraints.

6. In order to launch the Constraints Editor, expand the Design
Entry Utilities tree, expand the User Constraints tree and double-
click on Edit Implementation Constraints (Constraints Editor).
This will automatically run the Translate step, which is discussed
in the following section.
ISE 4 In-Depth Tutorial 4-7

ISE 4 In-Depth Tutorial
Figure 4-6 Edit Implementation Constraints

Translating the Design
ISE manages all of the files created during the implementation
process. The programs run by ISE use the settings supplied by you in
the options dialog box. This gives you complete control over how a
design is processed. Typically, one sets all their options first and then
runs through the entire flow by clicking Implement Design, and
selecting Run. This tutorial is going to do the implementation one
step at a time. During translation, the program NGDBuild is
executed, and performs the following functions:

• Converts input design netlists and writes results to a single
merged NGD netlist. The merged netlist describes the logic in the
design as well as any location and timing constraints.

• Performs timing specification and logical design rule checks

• Adds the User Constraints File (UCF) to the merged netlist

Once these processes are all complete, ISE launches the Constraints
Editor.
4-8 Xilinx Development System

Design Implementation
Figure 4-7 Launching Constraints Editor

Using the Constraints Editor
The Constraints Editor is a utility that allows you to edit constraints
previously defined (through a UCF file), as well as add new
constraints to your design. Input files to the Constraints Editor are:

• NGD (Native Generic Database) file. This file serves as input to
the mapper which then outputs the physical design database, an
NCD (Native Circuit Description) file.

• Corresponding UCF (User Constraint File). By default, when the
NGD file is opened, an existing UCF file with the same base name
as the NGD file is used. Alternatively, you can specify the name
of the UCF file.

The Constraints Editor generates a valid UCF file. The Translate step
(NGDBuild) uses the UCF file, along with design source netlists to
produce a newer NGD file, that incorporates the changes made. The
MAP program (the next section in the design flow) then reads the
NGD. In this design, the stopwatch.ngd file and stopwatch.ucf files
are automatically read into the Constraints Editor.

The Global tab appears in the foreground of the Constraints Editor
window. This window automatically displays all the clock nets in
your design, and allows you to define the associated period, pad to
setup, and/or clock to pad values.
ISE 4 In-Depth Tutorial 4-9

ISE 4 In-Depth Tutorial
Figure 4-8 Constraints Editor

Perform the following steps in the Constraints Editor:

1. Select the Period cell on the row associated with the clock net
CLK.

2. Double-click your left mouse button. This invokes the Clock
Period dialog box.

3. Within the Clock Signal Definition, keep the default (Specific
Time) selected to define an explicit period for the clock rather
designate a period which is relative to another timing
specification.

4. Enter a value of 18.5 in the Time text box. Verify that ns is selected
from the Units pull-down list. Click OK. Notice that the period
cell is updated with the global clock period constraint that you
just defined (with a default 50% duty cycle).

Note: For the purpose of this tutorial, you invoked a secondary
dialog box by double-clicking a cell to specify your constraint values.
Another feature is to do direct entry of constraints into cells by
simply clicking once.
4-10 Xilinx Development System

Design Implementation
5. Select the Ports tab from the Constraints Editor’s main window.

The left hand side displays a listing of all the current ports as
defined by the user. Notice that certain cells in the Location
column are pre-populated with device pins locking down ports
to actual pins on the target device. This information was obtained
by the Constraints Editor by way of the stopwatch.ucf file it read
in.

6. Enter the pin locations by selecting the Location text box
associated with each of the following signals:

onesout<0> -> H4
onesout<1> -> E3
onesout<2> -> E4
onesout<3> -> D2
onesout<4> -> D3
onesout<5> -> D1
onesout<6> -> C1

Figure 4-9 Constraint Editor’s Port Tab

7. Select File → Save. The change made within the Constraints
Editor is now saved into the stopwatch.ucf file in your current
revision directory.

8. Select File → Exit. If you get a dialog box, asking to Reset the
Implement Design process…, select Reset to reset the process.

9. Now, you will continue with the implementation, but translate
will need to be re-run. Right-click Translate, and select Rerun.
ISE 4 In-Depth Tutorial 4-11

ISE 4 In-Depth Tutorial
Figure 4-10 Rerun Translate Process

Mapping the Design
Now that all implementation strategies have been defined (options
and constraints), continue with the implementation of our design.

1. Right-click Map.

2. Select Run in the pop-up menu.

3. Expand the Implement Design tree, to see the progress through
implementation.

Figure 4-11 Mapping the Design
4-12 Xilinx Development System

Design Implementation
The design is being mapped into CLBs and IOBs. After mapping, the
design will be placed and routed. The final step in the design flow is
the Configure step in which a configuration bitstream is created for
downloading to a target device or for formatting into a PROM
programming file. Map performs the following functions:

• Allocates CLB and IOB resources for all basic logic elements in
the design

• Processes all location and timing constraints, performs target
device optimizations, and runs a design rule check on the
resulting mapped netlist.

After each step is done, you will see that each step has generated its
own report. Each report can be found by expanding either the
Translate tree or the Map tree. The following reports are listed by
their type and descriptions:

4. Expand either the Translate tree or the Map tree and double-click
one of the reports.

Figure 4-12 Translation Report and Map Report

5. Review the report for Warnings, Errors, and Information (INFO).

Table 4-2 Reports Generated Through MAP

Translation Report Includes warning and error messages from
the translation process.

Map Report Includes information on how the target device
resources are allocated, references to trimmed
logic, and device utilization. For detailed
information on the Map report, refer to the
Development System Reference Guide.
ISE 4 In-Depth Tutorial 4-13

ISE 4 In-Depth Tutorial
Using the Floorplanner
The Floorplanner is a graphical placement tool that gives you control
over placing a design into a target FPGA using a "drag and drop"
paradigm with the mouse pointer. The Floorplanner is specifically
intended to assist those users who require some degree of
handcrafting for their designs. You must understand both the details
of the device architectures and how floorplanning can be used to
refine a design.

The Floorplanner displays a hierarchical representation of the design
in the Design Hierarchy window using hierarchy structure lines and
colors to distinguish the different hierarchical levels. The Floorplan
window displays the floorplan of the target device into which you
place logic from the hierarchy. Logic symbols represent each level of
hierarchy in the Design Hierarchy window. You can modify that
hierarchy in the Floorplanner without changing the original design.
You use the mouse to select the logic from the Design Hierarchy
window and place it in the FPGA represented in the Floorplan
window.

Figure 4-13 Design Hierarchy and Floorplan Windows
4-14 Xilinx Development System

Design Implementation
With the Floorplanner, you can floorplan your design prior to or after
running PAR. In an iterative design flow, you floorplan and place and
route, interactively. You can modify the logic placement in the
Floorplan window as often as necessary to achieve your design goals.
You can save the iterations of your floorplanned design to use later as
a constraints file for MAP.

Alternatively, you can invoke the Floorplanner after running the
place and route tools to view and possibly improve the results of the
automatic implementation. Floorplanning is an optional
methodology to help you improve performance and density of a
fully, automatically placed and routed design. Floorplanning is
particularly useful on structured designs and data path logic. With
the Floorplanner, you see where to place logic in the floorplan for
optimal results, placing data paths exactly at the desired location on
the die.

In this section, the Floorplanner is used to make IOB assignments.
The Floorplanner will edit the UCF file by adding the newly created
placement constraints. The placement constraints you create in the
Floorplanner take precedence over existing constraints in the UCF.
You are going to focus on locking down several IOs into the UCF.

1. Expand the MAP tree.

2. Launch Floorplanner on the post-map design by double-clicking
on the Floorplan Design.

Figure 4-14 Launching Floorplanner

3. You are going to place some IOs in the Floorplan Window. In the
Hierarchical Design Window, expand the stopwatch “Primitives”
tree.
ISE 4 In-Depth Tutorial 4-15

ISE 4 In-Depth Tutorial
Figure 4-15 Stopwatch Primitives Hierarchy

4. Drag and drop the following nets to the specific locations:

Tenthsout<9> -> A7
Tenthsout<8> -> B7
Tenthsout<7> -> A8
Tenthsout<6> -> B8
Tenthsout<5> -> C8
Tenthsout<4> -> D8
Tenthsout<3> -> D9
Tenthsout<2> -> C9
Tenthsout<1> -> B9
Tenthsout<0> -> A9
Strtstop -> B12
Reset -> A12
CLK -> A10

Note: If you have already completed the Schematic chapter of this
tutorial, the Strtstop, Reset, and CLK pins are already locked down.
4-16 Xilinx Development System

Design Implementation
Figure 4-16 Net Locations

5. Once the pins are locked down, select File → Use UCF Flow.
This will enable the UCF flow and the pin locks to be written to
stopwatch.ucf.

6. Save the UCF by writing out the constraints, File → Write
Constraints, and select the stopwatch.ucf file and press Save.

Figure 4-17 Write Constraints Menu Option

7. Exit Floorplanner by File → Exit and select Yes and Save to the
following dialogs for stopwatch.ucf.

8. If you get a dialog box, asking to Reset the Implement Design
process…, select Reset to reset the process.

9. Now, you will continue with the implementation, but translate
and map will need to be re-run. Right-click MAP and select Re-
run All.
ISE 4 In-Depth Tutorial 4-17

ISE 4 In-Depth Tutorial
Using Timing Analysis to Evaluate Block Delays
After Mapping

After the design is mapped, you can use the Logic Level Timing
Report to evaluate the logical paths in the design. Because the design
is not placed and routed yet, actual routing delay information is not
yet available. The timing report describes the logical block delays and
estimated routing delays. The net delays that are provided are based
on an optimal distance between blocks (also referred to as unplaced
floors).

Estimating Timing Goals with 50/50 Rule
You can get a preliminary idea of how realistic your timing goals are
by evaluating a design after the map stage. A rough guideline
(known as the 50/50 rule) specifies that the block delays in any single
path make up approximately 50% of the total path delay after the
design is routed. For example, a path with 10ns of block delay should
meet a 20ns timing constraint after it is placed and routed. If your
design is extremely dense, the Logic Level Timing Report provides a
summary analysis of your timing constraints based on block delays
and estimates of route delays that can help to determine if you timing
constraints are going to be met. This report is produced after Map
and prior to PAR (Place And Route).

Report Paths in Timing Constraints Option
Because timing constraints were defined for this tutorial design, the
Report Paths in Timing Constraints option was selected. This option
forces the Logic Level Timing Report to provide a period and path
analysis on the constraints specified. Taking a look at the report, the
period timing constraint is listed on top, as is the minimum period
obtained by the tools after mapping. Because the report was limited
to one path per timing constraint, you see a breakdown of a single
path that contains 4 levels of logic. Notice the percentage of block
(logic) delay versus routing delay for this calculation. The unplaced
floors listed are estimates (indicated by the letter “e” next to the net
delay) based on optimal placement of blocks.
4-18 Xilinx Development System

Design Implementation
If you do not generate a Logical Level Timing Report, PAR still
processes a design based on the relationship between the block
delays, floors, and timing specifications for the design. For example,
if a PERIOD constraint of 8 ns is specified for a path, and there are
block delays of 7 ns and unplaced floor net delays of 3 ns, PAR stops
and generates an error message. In this example, PAR fails because it
determines that the total delay (10 ns) is greater than the constraint
placed on the design (8 ns). Use the Logic Level Timing Report to
determine timing violations that may occur prior to running PAR.

So, you are going to open the Logic Level Timing Report and review
the PERIOD Constraint that were entered earlier.

1. Make sure the Map tree is expanded and then double-click
Generate Post-Map Static Timing Report.

2. To open the Post-Map Static Timing Report, double-click Post-
Map Static Timing Report. Timing Analyzer is automatically
launched and shows the report.

Figure 4-18 Post-Map Static Timing Report

In Timing Analyzer, do we have any timing errors reported?

What is the Minimum Period? _______________________

Answers: No timing errors and the Min Period should be around
3.087ns.

3. Exit Timing Analyzer by selecting File → Exit.
ISE 4 In-Depth Tutorial 4-19

ISE 4 In-Depth Tutorial
Placing and Routing the Design
After the mapped design is evaluated to verify that block delays are
reasonable given the design specifications, the design can be placed
and routed. The Flow Engine can perform the following place and
route algorithms.

• Timing Driven —run PAR with timing constraints specified from
within the input netlist or from a constraints file

• Non-Timing Driven —run PAR and ignore all timing constraints

In this tutorial, timing driven placement and timing driven routing
are automatically performed by PAR because timing constraints are
specified for this design.

1. In the Design Implement tree, run Place and Route by double-
clicking Place & Route.

2. Review the reports generated to make sure the place and route
process finished as expected. Expanding the Place & Route tree
and double-clicking the Place & Route Report does this.

Besides the Place & Route Report, there are two other reports
generated by PAR.

Table 4-3 Reports Generated by PAR

Place & Route Report Provides a device utilization and delay summary. Use
this report to verify that the design successfully routed
and that all timing constraints were met.

Pad Report Contains a report of the location of the device pins.
Use this report to verify that pins locked down were
placed in the correct location.

Asynchronous Delay Report Lists all nets in the design and the delays of all loads
on the net.
4-20 Xilinx Development System

Design Implementation
Figure 4-19 Available PAR Reports

Using FPGA Editor to Verify the Place and Route
The FPGA Editor is a graphical application for displaying and
configuring Field Programmable Gate Arrays (FPGAs). The FPGA
Editor reads from and writes to Native Circuit Description (NCD)
files, macro files (NMC), and Physical Constraints Files (PCF).

The following is a list of a few of the functions you can perform on
your designs in the FPGA Editor.

• Place and route critical components before running the automatic
place and route tools.

• Finish placement and routing if the routing program does not
completely route your design.

• Add probes to your design to examine the signal states of the
targeted device. Probes are used to route the value of internal
nets to an IOB (Input/Output Block) for analysis during the
debugging of a device.

• Run the BitGen program and download the resulting bitstream
file to the targeted device.

• View and change the nets connected to the capture units of an
Integrated Logic Analyzer (ILA) core in your design.
ISE 4 In-Depth Tutorial 4-21

ISE 4 In-Depth Tutorial
First, launch FPGA Editor and view the actual design layout on the
FPGA.

1. In the expanded Place & Route tree, launch FPGA Editor by
double-clicking View/Edit Routed Design (FPGA Editor).

Figure 4-20 View/Edit Routed Design (FPGA Editor) Process

2. After FPGA Editor is open, change the List Window from All
Components to All Nets. This allows you to view all of the
possible nets in the design.

Figure 4-21 List Window in FPGA Editor

3. Select the clk_dcm (Clock) net and see the fanout of the clock net.
4-22 Xilinx Development System

Design Implementation
Figure 4-22 Clock Net

4. Exit FPGA Editor by selecting File → Exit.

Evaluating Post-Layout Timing
After the design is placed and routed, a Post Layout Timing Report is
generated by default to verify that the design meets your specified
timing goals. This report evaluates the logical block delays and the
routing delays. The net delays are now reported as actual routing
delays after the place and route process (indicated by the letter “R”
next to the net delay).

1. Double-click Generate Post-Place & Route Static Timing to create
the report.

2. Expand the Generate Post-Place & Route Timing tree and double-
click Post-Place & Route Static Timing Report to open it in Timing
Analyzer.
ISE 4 In-Depth Tutorial 4-23

ISE 4 In-Depth Tutorial
Figure 4-23 Post-Place & Route Static Timing Report

Following is a summary of this report.

• The minimum period value increased due to the actual routing
delays.

• After the Map step, logic delay contributed to about 80% of the
minimum period attained. The post-layout report indicates that
the logical delay value decreased somewhat. The total unplaced
floors estimate changed as well. Routing delay after PAR now
equals about 31% of the period; a true report of net delays after
the place and route step.

• The post-layout result does not necessarily follow the 50/50 rule
previously described because the worst case path includes
primarily component delays. After the design was mapped,
block delays constituted about 80% of the period.

After place and route, the majority of the worst case path is still made
up of logic delay. Since total routing delay makes up only a small
percentage of the total path delay, spread out across three nets,
expecting this to be reduced any further is unrealistic. In general, you
can reduce excessive block delays and improve design performance
by decreasing the number of logic levels in the design.
4-24 Xilinx Development System

Design Implementation
Creating Configuration Data
This section explains how to create configuration data. This section
includes creating a bitstream for the target device by running the
configure step, as follows:

1. Right-click Generate Programming File and select Properties.

Figure 4-24 Selecting Properties

The Process Properties dialog box appears with several tabs
available.
ISE 4 In-Depth Tutorial 4-25

ISE 4 In-Depth Tutorial
Figure 4-25 Process Properties’ Startup Options Tab

2. Select the Startup Options tab, and change the Startup Clock
from CCLK to JTAG, since you are going to configure this device
via Boundary Scan. This can remain at CCLK, if you were doing
Select Map or Serial Slave configuration.

3. Leave the remaining options in the default setting and select OK
to apply the new properties.

4. Double-click on Generate Programming File to create a bitstream
of this design.

The bitstream comes from the BitGen program and creates the
design_name.bit and design_name.ll files (in this tutorial, the
watch.bit and watch.ll files). The design_name.bit file is the actual
configuration data. The design_name.ll file is the logical allocation
file that is used during iMPACT to determine the location of the
probable points in the design. These files are automatically
copied to your working directory.
4-26 Xilinx Development System

Design Implementation
5. Verify that these files are in this directory. The design_name.11 file
is used to perform device readback with the iMPACT tool. For
more information on device readback, please refer to the latest
version of the Watch Design-Hardware Verification Tutorial (http://
support.xilinx.com/support/techsup/tutorials/index.htm)

6. Review the Programming File Generation Report by double-
clicking the report. Verify that the specified options were used
when creating the configuration data.

Figure 4-26 Programming File Generation Report

Using the PROM File Formatter
If you are going to program a single device using iMPACT, all you
need is a design.bit file. If you are going to program several devices in
a daisy chain configuration, or program your devices using a PROM,
you must use the PROM File Formatter (PFF) to create a PROM file.
The PROM File Formatter accepts any number of bitstreams and
creates one or more PROM files containing one or more daisy chain
configurations.

1. To start the PROM File Formatter (PFF), double-click on Generate
PROM File.

The PFF starts with a default PROM that matches the currently
selected (configured) revision. At this point, you can add
additional bitstreams to the daisy chain; create additional daisy
chains; remove the current bitstream and start over; or
immediately save the current PROM file configuration.

The status bar at the bottom of the PFF window displays the
PROM format, data format, current PROM size, and percentage
of the selected PROM used by the current PROM configuration.
The currently selected PROM is an XC17512L. The PFF
determined that an XC17512L is the correct PROM because it can
hold up to 1,048,576 configuration bits (or 53% full).
ISE 4 In-Depth Tutorial 4-27

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/techsup/tutorials/index.htm

ISE 4 In-Depth Tutorial
The right half of the PFF window is a directory structure used for
locating bitstreams. Only files with a .BIT extension are shown in
the list. For detailed information on using the PROM File
Formatter to create daisy chains or complex PROM
configurations, see the PROM File Formatter Reference/User Guide.
This tutorial describes how to save the default PROM file.

Figure 4-27 PROM File Formatter

2. Select File → PROM Properties to open the PROM Proper-
ties dialog box, shown in the following figure.

3. Select the following options in this dialog box.

• PROM File Format from the drop-down list

• PROM Type

• Number of PROMS used to hold the data

If you have more data than space available in the PROM, you
must split the data into several individual PROMs with the Split
PROM option. In this case, only a single PROM is needed.

4. Click OK to accept the PROM Properties.
4-28 Xilinx Development System

Design Implementation
Figure 4-28 PROM Properties Dialog Box

5. Select File → Save Description to save the PROM file.

6. Specify your working directory as the area where the PROM
Description File will be saved. The PROM File Formatter saves
both the PROM file (watch.mcs) and a PROM Description File
(watch.pdr). The PDR file can be re-opened if any changes are
required. Verify that the files exist in your directory.

7. Select File → Exit to close the PROM File Formatter.

This completes this chapter of the tutorial. For more information on
this design flow and implementation methodologies (especially some
of the tools/programs that were not covered as part of this tutorial),
please reference the online version of the Software Manuals at http:/
/support.xilinx.com.
ISE 4 In-Depth Tutorial 4-29

http://support.xilinx.com
http://support.xilinx.com

ISE 4 In-Depth Tutorial
4-30 Xilinx Development System

Chapter 5

Timing Simulation

Timing simulation uses the block and routing delay information from
a routed design to give a more accurate assessment of the behavior of
the circuit under worst-case conditions. For this reason, timing
simulation is performed after the design has been placed and routed.

This chapter includes the following sections.

• “Overview of Timing Simulation Flow”

• “Starting Modelsim”

• “Adding Signals”

• “Saving the Simulation”

Overview of Timing Simulation Flow
Timing (post-place and route) simulation is a recommended part of
the HDL design flow for Xilinx devices. Timing simulation, also
known as back-annotated simulation, uses the detailed timing and
design layout information that is available after place and route to
create a VHDL or Verilog simulation netlist. This enables simulation
of the design, which closely matches the actual device operation.
ISE 4 In-Depth Tutorial 5-1

ISE 4 In-Depth Tutorial
Required Files
The timing simulation flow requires the following files:

• Design Files (VHDL or Verilog)—The design file is produced by
the Xilinx software.

• Stimulus File (VHDL or Verilog)—This is also known as the
testbench. You can use the same testbench for functional
simulation as well as timing simulation. Also, you can create the
testbench with Xilinx HDL Bencher—See the “Timing
Simulation” chapter for information on this flow.

• Modelsim Script File (Optional)—The script file (.do) automates
the simulation to a large extent, and makes it easy to re-run the
simulation. Alternatively, the commands can be entered one-by-
one into the simulator. Xilinx ISE creates the script file needed to
run simulation in Modelsim.

• Xilinx Simulation Libraries—For timing simulation, the
SIMPRIMS HDL simulation library must be used. Details about
this library are provided in the following section.

Xilinx Simulation Libraries
To perform timing simulation of Xilinx designs in any HDL
simulator, the SIMPRIM library must be setup correctly. The timing
simulation netlist created by Xilinx is composed entirely of
instantiated primitives, which are located in the SIMPRIM library.
The recommended mapping name for the VHDL SIMPRIM library is
SIMPRIM, and for the Verilog SIMPRIM library is SIMPRIMS_VER.

For detailed instructions on compiling these libraries, see Xilinx
Answer Record # 2561, which can be accessed as follows:

1. Go to http://support.xilinx.com.

2. Enter “2561” in the search box, and check to see that the search
engine is pointing to “Answer Records.” Click OK.

3. Click the link to Answer Record # 2561.
5-2 Xilinx Development System

http://support.xilinx.com

Timing Simulation
Starting Modelsim
Xilinx ISE is fully integrated with any version of the ModelSim
Simulator. ISE provides work directory creation, source file
compilation, simulation initialization, and simulation property
control.

Specifying Simulation Process Properties
In the Sources in Project window, select stopwatch_tb.vhd
(stopwatch_tb.tf for Verilog). This displays the ModelSim Simulator
Process:

1. Click the + to expand this process.

2. Select and right-click Simulate Post-Place & Route VHDL
(Verilog) Model.

3. Select Properties.

The following properties are shown, and can be edited from the pop-
up GUI (as shown in Figure 5-1):

Simulation Properties

• Custom Do File—Use this option to specify a different .do run
script.

• Use Automatic Do File— If this option is unchecked, Modelsim
will start but not automatically run the processes required to
simulate the design. You must manually run the .do file from
Modelsim, or enter the commands one-by-one to run simulation.

• Simulation Run Time—Use this option to specify the default time
for which simulation is run.

• Simulation Resolution—This property is set to 1 ps by default,
but can be changed as required.

• Design Unit Name—Use this property to specify the top level
model to be loaded in ModelSim. Use this property if the top
level entity, configuration, or module is named something other
than the testbench name.
ISE 4 In-Depth Tutorial 5-3

ISE 4 In-Depth Tutorial
Display Properties

This tab gives you control over the MTI simulation windows. These
are the windows open by default, when timing simulation is
launched from Foundation ISE. By default, the Signal, Structure, and
Wave windows are launched. For more details on Modelsim
Simulator windows, refer to the ModelSim User Manual.

Simulation Model Properties

• Correlate Simulation Data to Input Design—By selecting this
property, you instruct the Xilinx post-place and route netlist
generation tools to append the timing details to the input design
(post NGDBUILD design). The advantage of using this option is
that the user-defined signal names are preserved. The
disadvantage is that the user design, rather than the physical
(post-place and route) design, is used. Therefore, if there are any
errors introduced by the place and route tools, they will not be
caught.

• Bring Out Global Set/Reset Net as a Port—Use this option to
create an external port in the simulation netlist that will allow
you to control of the power-on-reset from a port.

• Global Set/Reset Port Name— Default is GSR.

• Bring Out Global Tristate Net as a Port.

• Global Tristate Port Name— Default is GTS.

• Generate Test Fixture/Testbench File—Use this option to create a
testbench.

The following options will show up if the Advanced Process Settings
are enabled in Project Navigator.

• Retain Hierarchy in Netlist.

• ROC Pulse Width—Use this option to set the duration of the
Global Reset on Configuration Pulse Width. The default is 100 ns.

• TOC Pulse Width—Use this option to set the duration of the
Global Tristate on Configuration Pulse Width. The default is 1 ns.
5-4 Xilinx Development System

Timing Simulation
Figure 5-1 Simulation Process Properties
ISE 4 In-Depth Tutorial 5-5

ISE 4 In-Depth Tutorial
Performing Simulation
Once you have set the process properties, Modelsim you can
invoked. To start the functional simulation, double-click Simulation
Functional VHDL or Verilog Simulation.

ModelSim will now create the work directory, compile the source
files, load the design, and run simulation for the time specified.

There are two basic steps to simulate your design:

1. Adding Signals

2. Saving the Simulation

There are several different ways to perform each of these steps. These
methods are discussed briefly in the following sections.

Adding Signals
To view signals during the simulation, you must first add them to the
Wave window. Project Navigator automatically adds all of the top
level ports to the Wave window. Additional signals are displayed in
the Signal window based upon the selected structure in the Structure
window.

There are two basic methods for adding signals to the Simulator
Wave window.

• Drag and drop from the Signal window

• Select View → Wave → Selected Signals from the Signal
Window

The following procedure explains how to add additional signals in
the design hierarchy. For the purpose of example, add the smallcntr
output flip-flops used to count.

1. In the Structure window, click the + next to
uut:stopwatch(structure).

• uut is the instance in the testbench.

• stopwatch is the component/entity name.

• structure is the architecture name.
5-6 Xilinx Development System

Timing Simulation
Figure 5-2 Structure Window

2. Select sixty_lsbcount_qoutsig_0 in the Signals window. Notice
that the signals listed in the Signal window are updated.

3. Click and drag sixty_lsbcount_qoutsig_0 from the Signal window
to the Wave window.

4. Select sixty_lsbcount_qoutsig_1 in the Signal window, and select
View → Wave → Selected Signals to add the signal to the
Wave window. Notice that the waveforms have not been drawn
for these signals.
ISE 4 In-Depth Tutorial 5-7

ISE 4 In-Depth Tutorial
5. There are two ways to add the waveforms for these signals:
continue with the simulation, and restart the simulation.

• To continue to run the simulation, click the Continue Run
icon on the toolbar.

Figure 5-3 Continue Run Icon

• To restart the simulation, click the Restart Simulation icon.
The Restart dialog box opens. Click Restart.

Figure 5-4 Restart Icon

6. Click the Continue Run icon to re-run the simulation.

Saving the Simulation
The ModelSim Simulator gives you the ability to save the signals list
in the Wave window. This can be important when additional signals
or stimulus have been added, and the simulation must be restarted.
You can easily load the saved signals list each time the simulation is
started.

1. In the Wave window, select File → Save Format.

2. In the Save Format dialog box, change wave.do to sec_signal.do.
5-8 Xilinx Development System

Timing Simulation
Figure 5-5 Save Format Dialog Box

3. Click Save to close the dialog box.

4. Close the Simulator.

In addition, the simulation results that appear in the waveform are
also saved. These are saved in a file called vsim.wlf, which is
produced by default in the Modelsim project directory (which is the
same as the ISE project directory for ISE-MTI projects). If this file
needs to be preserved, it must be copied or renamed, otherwise it will
be overwritten upon restart of simulation.

To view the contents of this file later, type the following commands
one-by-one at the ModelSim prompt:

Modelsim> vsim -view vsim.wlf

vsim> view wave

vsim> add wave *

The simulation output will then appear in the Wave window.
ISE 4 In-Depth Tutorial 5-9

ISE 4 In-Depth Tutorial
5-10 Xilinx Development System

Chapter 6

iMPACT Tutorial

This chapter takes you on a tour of Xilinx’s next generation device
programming tool. iMPACT combines the functionality of the
existing JTAG Programmer and Hardware Debugger programs as
well as the Coolrunner download program into a single multi-use
tool.

This is the first and only chapter in the “IMPACT Flow.” This is an
option chapter for all other tutorial flows.

This tutorial contains the following sections:

• “Device Support”

• “Download Cable Support”

• “Configuration Mode Support”

• “Starting the Software”

• “Connecting to a Cable”

• “Boundary Scan Configuration Mode”

• “Creating a SVF or STAPL File”

• “Slave Serial Configuration Mode”

• “Select MAP Configuration Mode”
ISE 4 In-Depth Tutorial 6-1

ISE 4 In-Depth Tutorial
Device Support
The following devices are supported.

• Virtex™/-II/-II PRO/-E

• Spartan™/-II/-IIE/XL

• XC4000™E/L/EX/XL/XLA

• CoolRunner™XPLA3/-II

• XC9500™/XL/XV

• XC18V01

• XC18V02

• XC18V04

• XC18V256

• XC18V512

Download Cable Support

Parallel Cable III
The Parallel Cable connects to the parallel port and can be used to
facilitate Slave Serial and Boundary Scan functionality.

Multilinx Cable
The Multilinx cable connects to the USB port or the RS232 serial port
and can be used to facilitate Slave serial, Select MAP, and Boundary
Scan functionality.
6-2 Xilinx Development System

iMPACT Tutorial
Configuration Mode Support
Impact currently supports three configuration modes:

• Boundary Scan —FPGAs, CPLDs, and SPROMs

• Slave Serial—FPGAs

• Select Map—FPGAs (Virtex™/-II/-II PRO/-E and Spartan™/-
II/-IIE)

Starting the Software
This section describes how to start the iMPACT software from ISE
and shows how to run it stand-alone.

Opening iMPACT from the Project Navigator
First set the Properties for iMPACT which allows you to select the
configuration mode and the configuration file. By default, iMPACT
will open in Boundary Scan Mode and use the configuration file from
the current project. Once iMPACT has started, the configuration
mode can be changed and new configuration files can be selected, but
setting the properties will ensure that iMPACT opens in the correct
Mode and uses the correct configuration file. To set the properties,
right-click on Configure Device (iMPACT) in the Processes for
Current Source Window and select Properties (see Figure 6-1).
ISE 4 In-Depth Tutorial 6-3

ISE 4 In-Depth Tutorial
Figure 6-1 Selecting iMPACT Propeties in the Processes Window

After selecting Properties, the window displays as shown in the
following figure.
6-4 Xilinx Development System

iMPACT Tutorial
Figure 6-2 iMPACT Process Properties

From this window, select the Configuration Mode, the Type of
Configuration File, and the Configuration Filename. If Bitstream File
is selected as the type, the Configuration Filename can be left blank
and iMPACT automatically loads the bit file from the current project.
In the “Creating Configuration Data” section of the “Design
Implementation” chapter, the Start-Up Clock was set to JTAG Clock
because you are going to configure the device through Boundary
Scan and so the Properties shown in Figure 6-2 should be selected.

To start iMPACT from ISE, double-click on Configure Device
(iMPACT) in the Processes for Current Source window (see the
following figure).
ISE 4 In-Depth Tutorial 6-5

ISE 4 In-Depth Tutorial
Figure 6-3 Opening iMPACT from ISE

Note: When opening iMPACT from ISE, iMPACT automatically
connects to the cable. Make sure that the cable is connected to the
computer and that the VCC and GND pins on the cable are connected
to VCC and GND on the board. Power must be supplied to the cable
before connection can be established.

If the iMPACT properties are set as shown in Figure 6-2, the initial
window will look similar to what is shown in Figure 6-4. The device
has been added and the configuration file from the project has been
applied to the device.
6-6 Xilinx Development System

iMPACT Tutorial
Figure 6-4 Initial Window after Opening iMPACT from ISE

At this point, a single XC2V40 can be configured with stopwatch.bit.
If the JTAG pins are connected to the XC2V40 and the XC2V40 is the
only device in the chain, right-click the device and select Program.
Because it is unlikely that you will have just a XC2V40 that you
would like to program, the remainder of the tutorial gives a general
overview of how to use iMPACT. The examples use a variety of
different devices, not just the XC2V40. Please continue reading
through this tutorial to learn how to program multiple devices and
how to use the other Configuration Modes.
ISE 4 In-Depth Tutorial 6-7

ISE 4 In-Depth Tutorial
Opening iMPACT stand-alone
To open iMPACT without going through an ISE project, use one of
the following methods.

• PC — Click Start → Xilinx ISE 4 → Accessories →
iMPACT.

• PC or UNIX—Type impact at a command prompt.

When iMPACT is run stand-alone, the initial window appears as
shown in Figure 6-5. From this window, you need to select the
configuration mode and then add the devices that you would like to
program. Refer to the Boundary Scan, Slave Serial, or Select Map
section of this tutorial for information on how to use each
configuration mode.
6-8 Xilinx Development System

iMPACT Tutorial
Figure 6-5 Initial Window When Opening iMPACT Stand-Alone
ISE 4 In-Depth Tutorial 6-9

ISE 4 In-Depth Tutorial
Connecting to a Cable
A cable connection must be established before operations can be
performed on a device. When opening iMPACT from ISE or when
one of the modes is selected from the window shown in Figure 6-5,
the software automatically connects to a cable. If a cable connection
has been established, skip this section of the tutorial. If a connection
has not been established, right-click in a blank portion of the iMPACT
window and select either Cable Auto Connect or Cable Setup (see
Figure 6-6). Cable Auto Connect will force the software to search
every port for a connection. Cable Setup allows you to select the
cable and the port to which the cable is connected.

Figure 6-6 Selecting the Cable Connection Method
6-10 Xilinx Development System

iMPACT Tutorial
In iMPACT the log window shows each port being searched for a
connection. Figure 6-7 shows an example where the cable
autodetection failed because no cable was connected to the machine.
Notice that all eight ports on the machine were searched.

Figure 6-7 Failed Attempt to Establish Cable Connection

If a cable is connected to the system and the cable autodetection fails,
use the following steps to debug:

1. Verify that the VCC and GND pins of the cable are connected to
VCC and GND on the board and make sure that the power
supply for the board is turned on.

2. If a connection was previously established with another cable or
if the configuration mode has changed, terminate the previous
connection by selecting Output → Cable Disconnect from the
menu at the top of the iMPACT window.

3. Try performing a cable reset by selecting Output → Cable
Reset.

4. Check the connection to the port on the computer and try another
port if possible.

5. Shut down the software and reopen it.
ISE 4 In-Depth Tutorial 6-11

ISE 4 In-Depth Tutorial
6. Verify that the drivers for the cables were installed. Open the
fileset.txt file that is located in the directory where the software
was installed. The following lines should be in this file:

<Date of install> <Time> <Year>:: summary=MultiLINX Cable
Driver

<Date of install> <Time> <Year>:: summary=Parallel Cable III
Driver

If these lines are not present, the drivers were not installed. They
can be installed by reinstalling the software or by installing the
Webpack Programmer.

7. If these suggestions do not help, open at webcase with Xilinx
Technical Support at http://support.xilinx.com.

Boundary Scan Configuration Mode
Boundary Scan Configuration mode allows you to perform Boundary
Scan Operations on any chain comprising JTAG compliant devices.
The chain can consist of both Xilinx and non-Xilinx devices, but
limited operations will be available for non-Xilinx devices. To
perform operations, the cable must be connected and the JTAG pins,
TDI, TCK, TMS, and TDO need to be connected from the cable to the
board.

The boundary scan chain that is created in the software must match
the chain on the board. If the chain consists of eight devices, but only
one of them is going to be configured, all eight devices must be added
to the chain in the iMPACT window.

Automatically Creating the Chain
To automatically create the chain, right-click on an empty space in the
iMPACT window and select Initialize Chain (see Figure 6-6).
iMPACT will pass data through the devices and automatically
identify the size and composition of the boundary scan chain. Any
supported Xilinx device will be recognized and labeled and any other
device will be labeled as unknown. The software will then highlight
each device in the chain and prompt you for a configuration file.
Figure 6-8 shows an example where the chain consists of three Xilinx
devices, a FPGA, a CPLD, and a PROM.
6-12 Xilinx Development System

http://support.xilinx.com

iMPACT Tutorial
Figure 6-8 Example Result from Performing Initialize Chain
ISE 4 In-Depth Tutorial 6-13

ISE 4 In-Depth Tutorial
Manually Creating the Chain
The chain can be manually created or modified as well. To do this,
right-click on an empty space in the iMPACT window and select Add
Xilinx Device or Add Non-Xilinx device (see Figure 6-10). This
allows you to add devices one at a time. The device is added where
the large cursor is positioned. So, to add a device between existing
devices just click on the line between them and then add the new
device.

Manually adding devices is useful when creating a chain that is used
to generate an SVF or STAPL file, but Initialize Chain should be used
whenever possible. Initializing the chain verifies that the chain is set
up correctly and that iMPACT can correctly identify all of the devices.

Assigning Configuration Files
After initializing a chain or adding a device, the software prompts
you for a configuration file (see Figure 6-8). This is the file that will be
used to program the device. There are several types of configuration
files. A Bitstream file (*.bit) is used to configure an FPGA. A JEDEC
file (*.jed) is used to configure a CPLD. A PROM file (*.mcs, .exo,
.hex, or .tek) is used to configure a PROM.

If a configuration file is not available, a Boundary Scan Description
File (BSDL or BSD) file can be applied instead. The BSDL file
provides the software with necessary Boundary Scan information
that allows a subset of the Boundary Scan Operations to be available
for that device. To select a BSDL file, change the file type to *.BSD in
the Assign New Configuration File window and browse to the BSDL
file (see Figure 6-9). BSDL files for Xilinx devices are located in the
$XILINX\device\data directories. For example, if the software is
installed in c:\xilinx, the BSDL file for a Virtex device is in
c:\xilinx\virtex\data.
6-14 Xilinx Development System

iMPACT Tutorial
Figure 6-9 Selecting a BSDL File

For non-Xilinx devices, a BSDL or BIT file must be applied. The
BSDL file can typically be obtained from the vendor of the device. If
a BSDL file cannot be obtained, iMPACT can create a generic BSDL
file. When a non-Xilinx device is added, iMPACT asks for a BSDL or
BIT file for the device (see Figure 6-10). If yes, then you can browse to
the file. If no, iMPACT will ask you for the device name and the
Instruction Register Length (see Figure 6-11). This minimal amount
of information allows iMPACT to create a generic BSDL file that will
allow the device to be put in BYPASS or HIGHZ. Check with the
Vendor of the device to obtain the Instruction Register Length.
ISE 4 In-Depth Tutorial 6-15

ISE 4 In-Depth Tutorial
Figure 6-10 Unknown Device Query

Figure 6-11 Defining an Unknown Device

Saving the Chain Description
Once the chain has been fully described, it can be saved for later use.
This prevents you from having to redefine the chain each time the
iMPACT software is started. To do this, select File → Save or Save
As. This selection creates a Chain Description File (*.CDF). To restore
the chain when reopening iMPACT, select File → Open and browse
to the CDF file. The CDF file can also be selected in the Process
Properties window in ISE (see Figure 6-2). This operation restores the
chain when opening iMPACT from ISE.
6-16 Xilinx Development System

iMPACT Tutorial
Edit Preferences
To edit the preferences for the Boundary Scan Configuration, select
Edit → Preferences. This selection opens the window shown in
Figure 6-12. Click on help for a description of the Preferences.

Figure 6-12 Edit Preferences

Available Boundary Scan Operations
The available Boundary Scan Operations vary based on the device
and the configuration file that was applied to the device. To see a list
of the available options, right-click on any device in the chain. This
brings up a window with all of the available options. Figure 6-13
shows the available options for a 9500XL device that has a JEDEC file
applied to it.
ISE 4 In-Depth Tutorial 6-17

ISE 4 In-Depth Tutorial
Figure 6-13 Available Boundary Scan Operations for an
XC9572XL Device

When the Virtex device is selected, a different set of options is
available (see Figure 6-14).

Figure 6-14 Available Boundary Scan Operations for a Virtex
Device
6-18 Xilinx Development System

iMPACT Tutorial
Performing Boundary Scan Operations
Boundary Scan operations are performed on one device at a time.
When you select a device and perform an operation on that device, all
other devices in the chain are automatically placed in BYPASS (or
HIGHZ - see Figure 6-12).

To perform an operation, right-click on a device and then left-click on
one of the selections. For instance, when the Virtex Device is right-
clicked, the window in Figure 6-14 appears. Then left-click on Get
Device ID and the software accesses the IDCODE for this Virtex
Device. The result is displayed in the Log Window (see Figure 6-15).

Figure 6-15 Log Window Showing Result of Get Device ID

For another example, if you right-click on the XC9572XL and then
left- click on Program (see Figure 6-13), the Program Option window
appears (see Figure 6-16). You can then select the desired options and
click OK to begin programming. The Program options vary based on
the device.
ISE 4 In-Depth Tutorial 6-19

ISE 4 In-Depth Tutorial
Figure 6-16 Program Options for 9500XL Device

After clicking OK, the Program operation begins and an operation
status window displays (see Figure 6-17). At the same time, the log
window reports all of the operations being performed.

Figure 6-17 Operation Status
6-20 Xilinx Development System

iMPACT Tutorial
When the Program operation completes, a large blue message
appears showing that Programming Succeeded (see Figure 6-18).
This message disappears after a couple of seconds.

Figure 6-18 Programming Succeeded

The log window also shows that the programming completed
successfully and shows all of the operations that were performed (see
Figure 6-19).
ISE 4 In-Depth Tutorial 6-21

ISE 4 In-Depth Tutorial
Figure 6-19 Log Window Showing Successful Configuration of
the CPLD

Operations can continue to be performed in this manner. Select a
device and then select the operation. Wait for the previous operation
to complete and then perform the next operation.

Troubleshooting Boundary Scan Configuration
When an error occurs during a Boundary Scan operation, first verify
that the chain is set up correctly and verify that the software can
communicate with the devices. The easiest way to do this is to
Initialize the Chain (see the section on “Automatically Creating the
Chain” section). If the chain cannot be initialized, it is likely that the
hardware is not set up correctly or the cable is not properly
connected. If the chain can be initialized, try performing simple
operations. For instance, try getting the Device ID of every device in
the chain. If this can be done, then the hardware is set up correctly
and the cable is properly connected.
6-22 Xilinx Development System

iMPACT Tutorial
From this point, refer to the JTAG Problem Solver for more
debugging information. The JTAG Problem Solver is located at http:/
/support.xilinx.com/support/troubleshoot/psolvers.htm.

Creating a SVF or STAPL File
iMPACT currently supports the creation of device programming files
in two formats, SVF and STAPL. These programming files contain
both programming instructions and the configuration data and are
used by ATE machines and embedded controllers to perform
Boundary Scan operations. To create an SVF or STAPL file, Boundary
Scan mode must be selected. A cable does not need to be connected
because no operations are being performed on devices. All of the
configuration information is written to the SVF or STAPL file.

Creating the Chain
Before creating the SVF or STAPL file, the Boundary Scan chain must
be created. Refer to the section on “Manually Creating the Chain”
section for Boundary Scan Configuration Mode. The method of
adding devices is the same as described in this section.

Select Programming File
After the chain has been fully described, select Output → Use File
→ SVF File or STAPL File → Create SVF File or Create
STAPL File (see Figure 6-20). These selections access a window that
allows you to select a name for your programming file and specify
the location for this file. After selecting the name and location, the
SVF or STAPL file is ready to be written to.
ISE 4 In-Depth Tutorial 6-23

http://support.xilinx.com/support/troubleshoot/psolvers.htm
http://support.xilinx.com/support/troubleshoot/psolvers.htm

ISE 4 In-Depth Tutorial
Figure 6-20 Selecting SVF or STAPL File

Writing to the SVF or STAPL File
The process for writing to an SVF or STAPL file is identical to
performing Boundary Scan operations with a cable. You simply right-
click on a device and select an operation. For instance, in Figure 6-21,
you right-click on the first device in the chain and then left-click on
Get Device ID. The instructions that are necessary to perform a Get
Device ID operation are then written to the file. Figure 6-22 shows
what the SVF file looks like after the Get Device ID operation is
performed.
6-24 Xilinx Development System

iMPACT Tutorial
Figure 6-21 Selecting a Boundary Scan Operation

Figure 6-22 SVF File that Gets a Device ID from the First Device
in the Chain
ISE 4 In-Depth Tutorial 6-25

ISE 4 In-Depth Tutorial
Any number of operations can be written to an SVF or STAPL file.
For instance, after selecting Get Device ID for the first device in the
chain, you can select the second device in the chain and select the
Program option. The instructions and configuration data needed to
Program the second device are added to the file. After all the desired
operations have been performed, select Output → Use File → SVF
File or STAPL File → Close SVF File or Close STAPL File.
These selections close the file so that no more information can be
written to it. To add other operations in the future, you can select
Output → Use File → SVF File or STAPL File → Append to
SVF File or Append to STAPL File.

Slave Serial Configuration Mode
Slave Serial Configuration mode allows you to program a single
Xilinx device or a serial chain of Xilinx devices. To use the Slave
Serial Configuration Mode, click the Slave Serial Tab at the top of the
iMPACT window and establish a cable connection.

Adding a Device
To add a device, right-click on the iMPACT window and select Add
Device (see Figure 6-23).
6-26 Xilinx Development System

iMPACT Tutorial
Figure 6-23 Adding a Xilinx Device in Slave Serial Mode

After clicking on Add Xilinx Device, a window appears that allows
you to browse to the desired file (see Figure 6-24).
ISE 4 In-Depth Tutorial 6-27

ISE 4 In-Depth Tutorial
Figure 6-24 Add Device File Types for Slave Serial

Notice in Figure 6-24 that there are a number of different file types to
select from. An explanation of each type is below:

• FPGA Bit File (*.bit) — Standard bit file created by Bitgen. A Bit
file is used to program single FPGA.

• FPGA Raw Bit Files (*.rbt) — A Raw Bit File is an ASCII version
of the Bit file. The only other difference is that the header
information in a Bit File is removed from the Raw Bit File. This
file is also created by Bitgen and is used to program a single
FPGA.
6-28 Xilinx Development System

iMPACT Tutorial
• MCS and EXO Files (*.mcs, *.exo) — These are PROM files. To
program a serial chain of Xilinx devices, a PROM file is used to
concatenate all of the Bit files. This single PROM file is then
loaded into iMPACT and is used to configure the chain. The
PROM files are created by PROM FILE FORMATTER.

Only one file can be loaded for Slave Serial Configuration Mode and
so the PROM file must be used for programming a serial chain of
devices. Once the desired file is selected, a window similar to Figure
6-25 displays.

Figure 6-25 Device Loaded with a Single Bit File
ISE 4 In-Depth Tutorial 6-29

ISE 4 In-Depth Tutorial
Even if a chain of devices is being programmed, only the single
device shown in Figure 6-25 displays. This device represents a single
device, when a BIT or RBT file is used and represents a chain of
devices when a PROM file is used.

Programming the Device
To program a device, right-click on the device and then select
Program (see Figure 6-26).

Figure 6-26 Selecting the Program Option

When Program is selected, iMPACT begins programming the device
or chain of devices and when it completes, the large message shows
that Programming Succeeded (see Figure 6-27).
6-30 Xilinx Development System

iMPACT Tutorial
Figure 6-27 Window Shown When Slave Serial Programming
Completed Successfully
ISE 4 In-Depth Tutorial 6-31

ISE 4 In-Depth Tutorial
Troubleshooting Slave Serial Configuration
If configuration fails, the window in Figure 6-28 displays. Notice that
the error message appears in the Log Window.

Figure 6-28 Window that Appears when Programming Fails

There are two main error messages that you may encounter. The first
is:

DONE pin did not go low. Please check cable
connection.

Programming terminated due to error.
6-32 Xilinx Development System

iMPACT Tutorial
The first step in programming through slave serial is that PROG is
pulsed low, which erases the device and forces DONE to go low. If
the preceding error message appears, it is likely that the PROG or
DONE pin of the cable is not properly connected to the device.

The second common error message is:

Done pin did not go high.

Programming terminated due to error.

This error message can occur for many reasons. Below are some of
the common causes:

• The Mode pins on the device are not set to Slave Serial

• DIN, INIT, or CCLK are not connected.

• Noise is corrupting CCLK or DIN signals.

• The hardware is not set up properly.

• The wrong configuration file was used or the PROM file does not
have the BIT files concatenated in the correct order.

If these suggestions do not help resolve the problem, try using the
Configuration Problem Solver at http://support.xilinx.com/
support/troubleshoot/psolvers.htm.

Select MAP Configuration Mode
With iMPACT, Select MAP Configuration mode allows you to
program up to three Xilinx devices. The devices are programmed one
at a time and are selected by the assertion of the correct CS pin. To use
the Select MAP Configuration Mode, click the Select MAP tab at the
top of the iMPACT window and establish a cable connection. Only
the Multilinx cable can be used for Select MAP Configuration.
ISE 4 In-Depth Tutorial 6-33

ISE 4 In-Depth Tutorial
Adding a Device
To add a device, right-click the iMPACT window and select Add
Xilinx Device (see Figure 6-29).

Figure 6-29 Adding a Device for Select Map Configuration

After clicking on Add Xilinx Device, a window display allows you to
browse to the configuration (see Figure 6-30).
6-34 Xilinx Development System

iMPACT Tutorial
Figure 6-30 Configuration File Types for Select MAP
Configuration

Notice in Figure 6-30 that only two file types can be used, FPGA Bit
Files and FPGA Raw Bit Files. For a description of these files, see the
“Adding a Device” section.

Once a BIT or RBT file is selected the device displays in the iMPACT
window. Up to three devices can be added. Figure 6-31 shows an
example where two devices have been added. Notice that each one
has a different Chip Select (CS) pin. These correspond to the CS pins
on the Multilinx Cable. Make sure that the correct CS pin is
connected to the correct device. The CS pins can be swapped by
dragging and dropping the pins in the window.
ISE 4 In-Depth Tutorial 6-35

ISE 4 In-Depth Tutorial
Figure 6-31 Two Devices Added For Select Map Configuration
6-36 Xilinx Development System

iMPACT Tutorial
Programming and Verifying a Device
To program or verify a device, right-click the device and then select
Program or Verify (see Figure 6-32). The Multilinx cable asserts the
correct CS pin and then performs that operation on that device.

Figure 6-32 Selecting a Program or Verify in Select Map Mode

When Program or Verify is selected, iMPACT performs the operation
and a large status message indicates that the operation completed
successfully. Figure 6-33 shows a successful Verify operation.
ISE 4 In-Depth Tutorial 6-37

ISE 4 In-Depth Tutorial
Figure 6-33 Window Shown When Select MAP Verify Completed
Successfully
6-38 Xilinx Development System

iMPACT Tutorial
Troubleshooting Select MAP Programming and
Verify

If Programming or Verify fails, a large red status message indicates
that the operation failed. Figure 6-34 shows a failed Program
Operation.

Figure 6-34 Window Shown When Select Map Programming
Failed

When Programming fails, the error message will likely read:

Done pin did not go high.

Programming terminated due to error.

Programming failed.
ISE 4 In-Depth Tutorial 6-39

ISE 4 In-Depth Tutorial
This error message can occur for many reasons. Below are some of
the common causes:

• The Mode pins on the device are not set to Select Map Mode.

• One or more of the Select Map signals are not connected properly.

• The wrong CS pin is connected to the device.

• Noise is corrupting CCLK or the DATA lines.

• The hardware is not set up properly.

• The wrong configuration file was applied to the device.

When Verify fails, the error message will likely read:

ERROR:Bitstream:98 - There are ## differences.

ERROR:iMPACT:395 - The number of difference is ##

Verification failed.

The preceding error message can be caused by any of the conditions
listed above for a failed Program operation. In addition, the problem
might be caused because the BIT File was generated incorrectly. If
security is set to Level1 or Level2 or if Persist is set to No, verify will
fail. Check the Bitgen options and make sure that Security is set to
None and Persist is set to YES.

If these suggestions do not help resolve the problem, try using the
Configuration Problem Solver at http://support.xilinx.com/
support/troubleshoot/psolvers.htm.
6-40 Xilinx Development System

http://support.xilinx.com/support/troubleshoot/psolvers.htm
http://support.xilinx.com/support/troubleshoot/psolvers.htm

	ISE 4 In-Depth Tutorial
	About This Manual
	About the In-Depth Tutorial
	Additional Resources
	Tutorial Contents
	Tutorial Flows
	HDL Design Flow
	Schematic Design Flow
	Implementation-only Flow
	IMPACT Flow

	Conventions
	Typographical
	Online Document

	Table of Contents
	1 HDL-Based Design
	Getting Started
	Required Software
	Installing the Tutorial
	Tutorial Project Directories and Files
	Starting the ISE Software
	VHDL or Verilog?

	Overview of Project Navigator
	Sources in Project Window
	Module View
	Snapshot View
	Library View

	Processes for Current Source Window
	Process View

	Console Window
	Error Navigation to Source
	Error Navigation to Solution Record

	Snapshots
	Creating a Snapshot
	Restoring a Snapshot
	Viewing a Snapshot

	Project Archives
	Creating an Archive
	Restoring an Archive

	Overview of Synthesis Tools
	Xilinx Synthesis Technology (XST)
	Supported Devices
	Process Properties

	FPGA Express
	Supported Devices
	Process Properties

	Synplify/Pro
	Supported Devices

	Leonardo Spectrum
	Supported Devices
	Process Properties

	Design Description
	Design Entry
	Adding Source Files
	Correcting HDL errors
	Starting the HDL Editor
	Creating an HDL-Based Module
	Using the HDL Design Wizard and HDL Editor
	Using the Language Templates

	Creating a CoreGEN Module
	Creating the Core Generator module
	Instantiating the Coregen Module in the HDL Code

	Synthesizing the Design
	Synthesizing the Design using XST
	Synthesizing the Design using FPGA Express
	The Express Constraints Editor (FPGA Express Only)
	Using the Express Constraints Editor (FPGA Express Only)
	Viewing Synthesis Results (FPGA Express Only)

	Synthesizing the Design using Synplify/Synplify Pro
	Synplify’s Constraints Editor, SCOPE
	Using Synplify’s Constraints Editor, SCOPE
	Examining Synthesis Results

	Synthesizing the Design using Leonardo Spectrum

	2 Schematic-Based Design
	Getting Started
	Required Software
	Installing the Tutorial
	Tutorial Project Directories and Files
	Copying the Tutorial Files (Optional)
	Starting the ISE Software

	Overview of Project Navigator
	Sources in Project Window
	Module View
	Snapshot View
	Library View

	Processes for Current Source Window
	Process View

	Console Window
	Error Navigation to Source
	Error Navigation to Solution Record

	Snapshots
	Creating a Snapshot
	Restoring a Snapshot
	Viewing a Snapshot

	Overview of Synthesis Tools
	Xilinx Synthesis Technology (XST)
	Supported Devices
	Process Properties

	FPGA Express
	Supported Devices
	Process Properties

	Leonardo Spectrum
	Supported Devices
	Process Properties

	Design Description
	Design Entry
	Starting the Schematic Editor
	Manipulating the Screen View
	Creating a Schematic-Based Macro
	Creating the CNT60 Schematic
	Connectivity—I/O Markers
	Project Libraries
	Adding Components to CNT60
	Correcting Mistakes
	Placing the Remaining Components
	Drawing Wires
	Adding Buses
	Adding Bus Taps
	Adding Net Names
	Adding I/O Markers

	Saving the Schematic
	Creating the CNT60 symbol
	Placing the CNT60 Macro
	Creating a CORE Generator Module
	Creating the Core Generator module

	Creating a State Machine Module
	Opening the State Editor
	Adding New States
	Adding a Transition
	Adding a State Action
	Adding a State Machine Reset Condition
	Creating the State Machine Macro
	Placing the STMACH, Tenths, and decode symbols

	Creating an HDL-Based Module
	Using the HDL Design Wizard and HDL Editor
	Using the Language Templates
	Creating the HEX2LED symbol
	Adding the HEX2LED Component to the Schematic

	Specifying Device Inputs/Outputs
	Hierarchy Push/Pop
	Adding Input Pins

	Adding I/O Markers and Net Names
	Assigning Pin Locations
	Completing the Schematic

	3 Behavioral Simulation
	Overview of Behavioral Simulation Flow
	Required Files
	Xilinx Simulation Libraries
	Unisims Library
	LogiBLOX Library (VHDL Only)
	XilinxCoreLib Library

	Adding an HDL Testbench
	VHDL design
	Verilog design

	Creating a Testbench Waveform using HDL Bencher
	Creating a Testbench Waveform Source
	Initializing Inputs
	Generating Expected Results

	Behavioral Simulation using ModelSim
	Selecting Simulation Processes
	Specifiying Simulation Properties
	Performing Simulation
	Adding Signals
	Saving the Simulation
	Restarting the Simulation

	4 Design Implementation
	Installing the Tutorial Files
	Creating an Implementation Project
	Specifying Options
	Translating the Design
	Using the Constraints Editor
	Mapping the Design
	Using the Floorplanner
	Using Timing Analysis to Evaluate Block Delays After Mapping
	Estimating Timing Goals with 50/50 Rule
	Report Paths in Timing Constraints Option

	Placing and Routing the Design
	Using FPGA Editor to Verify the Place and Route
	Evaluating Post-Layout Timing
	Creating Configuration Data
	Using the PROM File Formatter

	5 Timing Simulation
	Overview of Timing Simulation Flow
	Required Files
	Xilinx Simulation Libraries

	Starting Modelsim
	Specifying Simulation Process Properties
	Simulation Properties
	Display Properties
	Simulation Model Properties

	Performing Simulation

	Adding Signals
	Saving the Simulation

	6 iMPACT Tutorial
	Device Support
	Download Cable Support
	Parallel Cable III
	Multilinx Cable

	Configuration Mode Support
	Starting the Software
	Opening iMPACT from the Project Navigator
	Opening iMPACT stand-alone

	Connecting to a Cable
	Boundary Scan Configuration Mode
	Automatically Creating the Chain
	Manually Creating the Chain
	Assigning Configuration Files
	Saving the Chain Description
	Edit Preferences
	Available Boundary Scan Operations
	Performing Boundary Scan Operations
	Troubleshooting Boundary Scan Configuration

	Creating a SVF or STAPL File
	Creating the Chain
	Select Programming File
	Writing to the SVF or STAPL File

	Slave Serial Configuration Mode
	Adding a Device
	Programming the Device
	Troubleshooting Slave Serial Configuration

	Select MAP Configuration Mode
	Adding a Device
	Programming and Verifying a Device
	Troubleshooting Select MAP Programming and Verify

